STUDY OF HUMAN ATRIAL NATRIURETIC FACTOR IN FUNCTIONAL RENAL FAILURE OF CIRRHOSIS

Thesis submitted for the partial fulfillment of M.D. Degree in CUNICAL AND CHEMICAL PATHOLOGY

By Ghada Mohammed Sadek Sabour

SUPERVISED BY

Prof. Dr. Mahmoud Sabry Sallam
Prof. of Clinical Pathology
Ain Shams University

Prof. Dr. Nadia Ali Abdel-Sattar Assist. Prof. of Clinical Pathology Ain Shams University

Prof. Dr. Suzan Hosny Faragallah Ass. Prof. of General Medicine Ain Shams University

Dr. Farid Adly FaridLecturer of Clinical Pathology
Ain Shams University

Ain Shams University Faculty of medicine 1994

ACKYOWLEDCHEFT

I WOULD LIKE TO EXPRESS MY DEEPEST GRATITUDE AND APPRECIATION TO PROF.

DR. MAHMOUD SARRY SALLAM, PROFESSOR OF CLINICAL PATHOLOGY FOR HIS

UNLIMITED SUPPORT TO OVERGOME OBSTACLES ENCOUNTERED DURING THIS STUDY AND

FOR HIS PRECIOUS AND VALUABLE GUIDANCE THROUGHOUT THE WHOLE WORK AND FOR

GIVING ME THE OPPORTUNITY TO WORK UNDER HIS SUPERVISION.

I'M GREATLY INDEBTED TO *PROF. DR. RADIA ALY ARDEL-SATTAR, ASSISTANT PROFESSOR OF CLINICAL PATHOLOGY* FOR HER GENEROUS HELP, COOPERATIVE ATTITUDE AND VALUABLE REMARKS IN THIS STUDY FROM WHOM I LEARNT A LOT.

I WOULD LIKE TO THANK *PROF. DR. SUZAN HOSNI PARAGALLAH, ASSISTART PROFESSOR OF GENERAL MEDICINE* FOR HER HELP IN THE PROPER CHOICE OF PATIENTS INCLUDED IN THIS STUDY.

I'M MUCH OBLIGED TO *DR. DALIA HELEY FARAG, LECTURER OF CLINICAL PATHOLOGY* FOR HER CONTINUOUS ENCOURAGEMENT AND UNLIMITED ADVISES THAT LEAD TO THIS FINAL OUTCOME.

I'D LIKE TO THANK *DR. PARID ADLY FARID, LECTURER OF CLINICAL PATHOLOGY*FOR HIS GOOD SUPERVISION.

SPECIAL THANKS GO TO *PROF. DR. MOHAMED SADEK SABOUR, PROFESSOR OF GENERAL MEDICINE AND PROF. DR. LAILA MOHAMED OSMAN, PROFESSOR OF GLINICAL PATHOLOGY* FOR THEIR USUAL GENEROUS HELP AND SUPPORT.

I COULD NOT IGNORE THE GREAT EFFORTS PROVIDED BY *RIOCHEMIST. AHMED*KANAL ABOUL-MAGD IN HELPING ME WITH THE PRACTICAL PART OF THIS WORK,

STATISTICAL ANALYSIS OF THE RESULTS AND PRESENTABLE TYPING OF THIS THESIS.

LAST BUT NOT LEAST, I WOULD LIKE TO THANK MY COLLEAGUES, THE STAFF OF DOCTORS, CHEMISTS AND TECHNICIANS OF THE LABORATORIES AT AIN SHAMS UNIVERSITY HOSPITALS.

G. Sabour

Contents

Introduction and Aim of the Work				
Review of Literature				
Chapter I:	3			
A. The atrial natriuretic peptide				
1. Historical background	3			
2. Site of production	4			
3. Biosynthesis and molecular structure	5			
4. Storage and secretion	10			
5. Mechanism of action	13			
Clearance of ANP from the circulation	17			
7. The natriuretic peptide family	18			
B. Biological role and physiological actions of ANP				
1. Actions on the cardiovascular system	20			
2. Actions on the kidney	22			
3. Effects on renin secretion	29			
4. Effects on angiotensin	29			
5. Adrenal actions	30			
6. Other endocrine actions	32			
7. Effect on fluid compartmentalization	32			
8. Paracrine action	33			
C. Physiological variation in ANP level	_			
1. 24-hours ANP level variation	34			
2. Age	35			
3. Effect of gender	36			
4. Effect of posture	37			
5. Effect of physical exercise	37			
6. Effect of dietary sodium intake	38			
7. Pregnancy	38			

D. Atrial natriuretic peptide in some pathological conditions					
1. Congestive heart failure	40				
2. Chronic renal failure					
3. Acute renal failure					
4. Nephrotic syndrome	42				
5. Hypertension					
6. Diabetes Mellitus					
7. Thyroid dysfunction					
8. Primary aldosteronism					
9. Pre-eclampsia	45				
Chapter II:					
Functional renal failure of cirrhosis					
A. Introduction to FRFC					
B. Renal haemodynamics in liver cirrhosis and FRFC	47				
C. Clinical features of FRFC	59				
Chapter III:					
Measurement of atrial natriuretic peptide					
Methods of assay:					
A. Bioassay					
B. Immunoassays					
1. Radiolabelled immunoassay	64				
2. Enzyme labelled assay	69				
Methods of extraction	70				
Subjects and Methods					
Results					
Discussion					
Summary and Conclusions					
Appendix					
References					
Arabic Summary					

LIST OF ERRATA

PAGE	LINE	MISTAKE	CORRECT
4 6	9 2	DeBodd Misono et al.	DeBold Misono et al. (1984)
7 40 58	18 16 13	peptide symptomatic symptomatic	peptides sympathetic sympathetic
61 81 84	8 8 2	transaminase nitogen	transferase nitrogen
87 88	8 14	od handley without function	of handled without renal function
99 107	2 9	hepatorenal 33 and 304	FRFC 33 when extracted and 304
114 118	8 4	ease in patients with FRFC	as in case of in controls and in
118	11	of extracted	patients with cirrhosis of unextracted

INTRODUCTION AND AIM OF THE WORK

Introduction:

Patients with advanced liver disease develop a fatal syndrome of acute renal failure referred to as functional renal failure of cirrhosis (FRFC). Renal arterial and arteriolar vasoconstriction have been suggested to be the cause of this syndrome (Morgan et al., 1988).

Human atrial natriuretic peptides (ANP) synthesized and stored in the atrial myocardial granules are powerful relaxants for renal vasculature (*Geller et al.*, 1984) as well as causing marked enhancement of renal salt and water excretion (*Ballerman and Brenner*, 1985).

A disturbance in release and/or functions of the human ANP could lead to renal arterial vasoconstriction and variation in renal sodium handling as seen in functional renal failure of cirrhosis (Morgan et al., 1988).

Aim of the work:

This work aims to study the level of circulating human atrial natriuretic peptide in patients with functional renal failure of cirrhosis (FRFC) and to compare

its level with those in patients with cirrhosis without renal impairment and in patients with acute renal failure in an attempt to clarify its role in the pathophysiology of FRFC.

The second aim is to compare the levels of ANP in plasma when assayed without extraction with those obtained after preliminary extraction.

REVIEW OF LITERATURE

Chapter I:

A. THE ATRIAL NATRIURETIC PEPTIDE

For centuries, the heart's mechanical function as a pump to maintain blood pressure for tissue perfusion has been described. Later on, the heart has also been identified as an endocrine organ in that it secretes a hormone variously referred to as atrial polypeptide, atriopeptin, auriculin, cardionatrin or atrial natriuretic peptide (ANP) (Cantin and Genest, 1986). Since then studies have been in continuous progress to elucidate this hormone's physiological importance, mechanism of action, and pathophysiologic significance in the development of certain cardiovascular and renal diseases as well as other conditions with sodium and water imbalance (Cosgrove, 1989).

1. Historical background:

In 1956, Kish was the first to describe the presence of secretory granules in the cardiac atria. During the same year, the role of the atria as sites for sensing changes in blood volume was demonstrated by Henry and his colleagues (1956) when an increase in the urinary flow rate was observed in response to inflation of

the left atrium of dogs by a balloon. These membrane-bound granules were found to be similar to those found in polypeptide-hormone-producing cells (*DeBold et al.*, 1979). In 1979, *DeBold* discovered that sodium deprivation leads to atrial hypergranulation, whereas sodium loading causes degranulation. Furthermore, it was shown that tissue homogenates of rat atrial myocardium resulted in a brisk and a marked increase in sodium excretion when injected intravenously in a test animal (*DeBold et al.*, 1981).

2. Site of production:

DeBdd et al. (1981) reported that myocardial cells of the cardiac atria, but not the ventricles, contained secretory granules. However, several years later, Yasue and his colleagues (1989) were able to document the release of ANP from the ventricle in patients with dilated cardiomyopathy. They reported a significant increase in plasma ANP levels between the root of the aorta and the anterior interventricular vein, which drains the blood from the left ventricle but not from the atria, and this correlated well with impairment of left ventricular function (Yasue et al., 1989).

Oberhansli and his colleagues (1990) suggested that a reinduction of the ANP gene may occur in compensated congenital heart disease with ventricular overload and some degree of ventricular hypertrophy. Thus, both atrial and ventricular cardiocytes secrete ANP, yet in different ways. Atrial cardiocytes secrete ANP by means of a regulated pathway, because they store ANP, contain abundant secretory granules and appear to respond to appropriate stimuli. Neonatal ventricular cardiocytes release ANP rapidly after synthesis (Pasterac et al., 1990).

3. Biosynthesis and molecular structure of ANP:

Three peptides have been isolated from human extracts (Yandle et al., 1986). The molecular weight of the isolated ANP varies from 2,500-13,000 dalton (Laragh, 1985). The 28-amino acid peptide (a-human atrial natriuretic peptide (a-h-ANP)) is the biologically active molecule and is thought to be cleft from the C-terminal of the pro-ANP during release. This is the principal circulating form of ANP (Misono et al., 1984) (fig. 1).

Human atrial natriuretic peptide is synthesized as a 151-amino acid pre-pro-ANP precursor and is stored as a 126-amino acid pro-ANP in atrial myocyte granules (Misono et al., 1984).