at warm

STUDIES OF ANTIMONIAL ANTIBILHARZIAL COMPOUNDS (EFFECT ON LIPID CONTENT AND METABOLISM)

BY

MICHEL D. KAYAL

THESIS

SUBMITTED IN FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

IN BIOCHEMISTRY

DEPARTMENT OF BICCHEMISTRY, FACULTY OF SCIENCE AIN SHAMS UNIVERSITY, CAIRO, EGYPT, U.A.R.

June 1968

THESIS	APPROVED	BY	:				
		- enter					
							
		,			·····	 	
DATE:							

ACKNOWLEDGEMENT

This study was supervised by Dr. Ibrahim Raouf Shimy, Professor of Microbiology, Department of Biochemistry, Faculty of Science, Ein Shams University; Dr. James T. Davis, former Head, Biochemistry Department, United States Naval Medical Research Unit No.3 (NAMRU-3) and Dr. Vinayak N. Patwardhan, Assistant Director Biochemistry and Nutrition, NAMRU-3, to each of whom the writer expresses his deepest gratitude for constant encouragement and valuable advice.

The author wishes also to thank his colleagues Said El Shami and Hemmat Ragheb as well as the staff of the Biochemistry Department for their kind assistance. He is also most grateful to the Head and staff members of the Parasitology Department, NAMRU-3, for cooperation and facilities offered.

The author is indebted to the Director, NAMRU-3 and to the Director, Nutrition Division, Biochemistry Department, Vanderbilt University for help and facilities put at his disposal to accomplish this study. The research was supported in part by U.S. Public Health Service Grant No. A-M-08317-01, Office of Naval Research Grant No. 2049, and by PL-480 Grant from the U.S. National Institutes of Health No. 112501-2.

Special thanks are due to Miss Alexandra Patsalidis and Miss Mona Rizk for typing the thesis and to Mr. Sherif El Tony and Mr. Berge Zek-Zenian for drafting and photographing the illustrations.

. v.

TABLE OF CONTENTS.

	Page
ACK-FOWLEDGMENT	iii
LIST OF TABLES	vii
LIST OF FIGURES	x
CHAPTER I	
INTRODUCTION	1
I GELERAL CONSIDERATIONS	1
II EXTERNAL FEATURES AND LIFE CYCLE OF THE PARASITE	4
III TREATMENT OF SCHISTOSOMIASIS	7
IV BIOCHEMISTRY AND METABOLISM OF THE PARASITE	17
V PULTPOSE OF THE WORK	32
CHAPTER II	
LIPID CONTENT OF THE WORMS	34
Materials and Methods	34
Results and Discussion	52
CHAPTER III	
EFFECT OF TREATMENT WITH TARTAR EMETIC ON LIPID CONTENT OF THE WORMS.	86
Materials and Methods	86
Results	87
Magazine	T - CALA

ĭ

	<u>Page</u>
CHAPTER IV	
LIPID METABOLISM OF SCHISTOSOMA MANSONI	112
Materials and Methods	112
Results	121
Discussion	134
GENERAL DISCUSSION	143
SUMMARY	148
ITST OF PETERRANOES	150

vii.

LIST OF TABLES

		Page
<u>Table</u>		
1	Comparison of the trivalent antimony content, unit and total dose as antimony of substances in current use as schistosomicides	12
2	Lactic acid production of S. mansoni in the presence and absence of glucose	18
3	Kinetics of phosphoglucose isomerases of rabbit muscle and of S. mansoni	22
4	The increase in the ratio $\frac{G-6-P+F-6-P}{FDP+TP}$ during antimonial shift and its reversibility	24
5	Dry weight and protein content of S. mansoni and lipid content of male worms	53
6	Dry weight and protein content of male and female S. mansoni	55
7	Cholesterol values of lipid extract of male S. mansoni	60
8	Phospholipid determination on lipid extract of male S. mansoni	61
9	Acyl ester bonds determination on total and fractionated lipids of male S. mansoni	62
10	Composition of male S. mansoni lipids	63
11	Fatty acids present in phospholipids and their percentages	67
12	Fatty acids of triglycerides and their percentages	7 0
13	Free fatty acids and their percentages	71.

v.i	1	
- 4		

<u>Table</u>		Page
14	Fatty acids of cholesterol esters and their percentages	76
15	Fatty acid pattern of the total lipid extract	79
16	Total fatty acids of hamster's lipids in percentage and their hydrogenated product	83
17	Fatty acids found in hamster's serum and in male	84
18	Dry weight, lipid and protein content of male S. mansoni from treated hamsters	89
19	Cholesterol, phospholipids and acyl ester bond values on lipid extract of S. mansoni from treated hamsters	90
20	Fatty acids of phospholipids of treated male S. mansoni	93
21	Fatty acids of triglycerides from treated males S. mansoni	96
22	Free fatty acids from treated males S. mansoni.	100
23	Fatty acids from cholesterol esters from treated males S. mansoni	103
24	Total fatty acids from treated males S. mansoni	106
25	Comparison of different values of male S. mansoni before and after treatment of host	108
26	Change of fatty acids of lipid fractions after treatment of host	110
27	Changes of total fatty acid content of male S. mansoni before and after treatment of the host.	111
28	Composition of Senft's simplified medium	114
29	Incorporation of glucose-C ¹⁴ (U.L.) in lipids of male S. mansoni	122

<u>Table</u>		Page
30	Effect of absence or presence of glucose on acetate-C14 incorporation in lipids of male S. mansoni.	123
31	Incorporation of acetate-C ¹ 4 in lipids of male S. mansoni with time	124
32	Incorporation of acetate-C ¹⁴ with time during 12 hours in lipids of S. mansoni males	125
33	Glucose-C ¹⁴ (U.L.) incorporation in whole male worms of S. mansoni incubated in two different media	129
34	Effect of tartar emetic on incorporation of glucose-C14 in lipids of male S. mansoni	130
35	Effect of tartar emetic on incorporation of acetate-Cl4 in lipids of male S. mansoni	131
36	Effect of tartar emetic on incorporation of pyruvate-C14 in lipids of male S. mansoni	132
37	Effect of tartar emetic on incorporation of malonate-C14 in lipids of male S. mansoni	133

47.1	

LIST OF FIGURES

Figure		Page
1	External features of Schistosoma mansoni	6
2	Clinical formulae of some antibilharzial drugs	15
3	Some enzymes and reactions involved in glycolys glycolysis of glucose and glycogen (Embden - Meyerhof Cycle)	20
4	Summary of maximal changes in concentration of amino acid following incubation of schistosomes.	28
5	Electron microscope photograph of the integument of a male schistosome	31
6	Tanks used for snail breeding	36
7	Thin layer chromatogram of standard lipid classes	42
8	Standard curve for acyl esters determination	47
9	Plot of homologous series of carbon chains	50
10	Gas-liquid chromatogram of a mixture of saturated and unsaturated fatty acids before and after hydrogenation	51.
11	Thin layer chromatogram of lipids of Schistosoma mansoni	57
12	Gas-liquid chromatogram of fatty acids of phospholipid fraction	65
13	Gas-liquid chromatogram of fatty acid of phospholipid fraction after hydrogenation	66
14	Gas-liquid chromatogram of fatty acids of triglyceride fraction	68
15	Gas-liquid chromatogram of fatty acids of triglyceride fraction after hydrogenation	69
16	Gas-liquid chromatogram of free fatty acid	772

<u>Figure</u>		Page
17	Gas-liquid chromatogram of free fatty acid fraction after hydrogenation	73
18	Cas-liquid chromatogram of fatty acids of cholesterol esters fraction	75
19	Gas-liquid chromatogram of the total fatty acids present in Schistosoma mansoni	77
20	Cas-liquid chromatogram of the total fatty acids after hydrogenation	7 8
21	Gas-liquid chromatogram of the total fatty acids of hamster's serum	82
22	Gas-liquid chromatogram of fatty acids of phospholipid fraction after treatment	91
23	Gas-liquid chromatogram of hydrogenated fatty acids of phospholipid fraction after treatment.	92
24	Gas-liquid chromatogram of fatty acids of triglyceride fraction after treatment	94
25	Gas-liquid chromatogram of hydrogenated fatty acids of triglyceride fraction after treatment.	95
26	Gas-liquid chromatogram of the free fatty acids fraction after treatment	98
27	Gas-liquid chromatogram of hydrogenated free fatty acid fraction after treatment	9 9
28	Cas-liquid chromatogram of fatty acids of cholesterol esters fraction after treatment	101
29	Gas-liquid chromatogram of hydrogenated fatty acids of cholesterol esters fraction after treatment	102
3 0	Gas-liquid chromatogram of total fatty acids after treatment	104
31	Gas-liquid charomatogram of hydrogenated total fatty acids as our treatment	105

••	•	-2	
х	Ł		

Figure		Pase
32	Incorporation of Acetate-C ^{1/4} in worms during 24 hours	126
33	Incorporation of Acetate-C ¹⁴ in worms during	127

CHAPTER I.

INTRODUCTION.

I. GENERAL CONSIDERATIONS.

A chronic endemic disease, characterized by blood in the urine and by various bladder troubles has been known to exist in Egypt and probably elsewhere. The eggs of the parasite which causes the disease have been discovered in the renal cortex of a mummy dated 1250 A.C. A clinical account of what appears to be the disease has been mentioned in the Kahn papyrus of the XIIth Dynasty and 400 years later in the papyri of Ebers and Hunt and then in those of Berlin and London of the XVIIth Dynasty.

It was not until 1851 that Theodor Bilharz in Cairo found the causative agent of this disease in the mesenteric veins during a post mortem examination and he identified it as a fluke.

The life cycle of the worm was worked out by Loos and Leiper (1918) in Kasr-El-Ainy Hospital. The epidemiology and treatment were investigated by Khalil and Christopherson (1928) in the said Faculty. Finally the clinical aspect was studied by Madden, Day, Aly Ibrahim and Makkar (1936).

It is estimated that some 150 million human beings in the continents of Asia, Africa and Latin America suffer at present from bilharziasis. Because of its wide distribution and the large number of people affected, bilharziasis has now been recognized as second only to malaria in importance as a parasitic disease.

In Egypt where the disease is hyperendemic, it is estimated that 18 million out of a total population of 26 million are affected. Accordingly the reduction in total economic productivity is estimated to be some 30% and the financial loss to be about 200 million pounds per annum (Khalil El Hadidy, 1964). The mortality rate directly or indirectly due to bilharziasis has been estimated to vary from 1 to 10% (A.H. Moussa, 1964).

Bilharziasis is increasing as new irrigation projects create a greater number of suitable habitats for vector snails. Increase in the cultivation of rice and cotton necessitates the establishment of new schemes of irrigation, but the deterioration of health and productivity following the development of perennial irrigation outweighed the increase in wealth from agricultural development (Ayad, 1955).

Three main species of schistosome parasites affect humans, these are the haematobium, the mansoni and the japonicum.

Schistosoma japonicum is found in Japan and China, while

Schistosoma mansoni prevails in Latin America, East and South

Africa and in the Mile Delta of Egypt. Both types are charaterized by the fact that the parasites after mating gather in