ROLE OF RADIONUCLIDE SCINTIGRAPHY IN EVALUATING PATIENTS WITH MAMMARY CARCINOMA

12000

M.Sc. THESIS

SUBMITTED IN PARTIAL FULFILMENT OF MASTER DEGREE IN RADIODIAGNOSIS

ВУ

AZZA ABDEL GHAFAR BORAEY
MB. B. Ch.

FACULTY OF MEDICINE
AIN SHAMS UNIVERSITY

SUPERVISORS

Prof. Dr. LAILA FOAD GALAL
PROFESSOR OF RADIODIAGNOSIS
FACULTY OF MEDICINE
AIN SHAMS UNIVERSITY

Dr. AHMED TALAAT KHAIRY
LECTURER OF RADIODIAGNOSIS
FACULTY OF MEDICINE
AIN SHAMS UNIVERSITY

1989

CONTENTS

	Page
INTRODUCTION AND AIM OF THE WORK	1
ANATOMICAL AND PHYSIOLOGICAL CONSIDERATIONS OF MAMMARY GLAND	2
PATHOLOGY OF MAMMARY CARCINOMA	15
CLLINICAL PICTURE OF BREAST CARCINOMA	33
METHODS OF INVESTIGATION	38
RADIONUCLIDE IMAGING OF PRIMARY BREAST CARCINOMA	47
RADIONUCLIDE IMAGING OF SECONDARIES OF BREAST CARCINOMA	54
MATERIAL AND METHODS	76
RESULTS AND DEMONSTRATION OF CASES	84
DISCUSSION	130
SUMMARY AND CONCLUSION	142
REFERENCES	146
ARARIC SUMMARY	-

****** ******** ****

ACKNOWLEDGEMENT

I would like to express may deepest gratitude to **Dr. Laila**Foad Galal, Professor of Radiodiagnosis, Ain Shams University,
for her continued encouragement and support throughout the supervision who helped me so much in achieving this thesis.

I am greatly indebted to Dr. Ahmed Talaat Khairy, Lecturer of Radiodiagnosis, Ain Shams University, for his great effort, sincere concern and careful supervision aiming at the perfection of this work.

My great appreciations go to Mr. Magdi Abou-Hager and Mr. Ahmed Mahmoud, for their help in the preparation of radio-isotopes.

Finally, special words of thanks and recognition of deep gratitude are given to my family who supported me a lot.

INTRODUCTION AND AIM OF THE WORK

INTRODUCTION AND AIM OF THE WORK

Breast cancer has been one of the most serious diseases affecting women in this century. Its early detection and presurgical diagnosis is still in challenge.

Radioisotope scanning of breast has permitted additional noninvasive, sensitive though non-specific modality to detect primary malignant breast lesions in conjunction with physical examination and mammography.

The follow-up and management of carcinoma of the breast currently utilizing radioisotope imaging to detect secondaries in bone, liver, brain and lymph nodes, since they are very sensitive indicators of early metastases.

Accordingly, the aim of this work is to evaluate the advantages and limitations of various scintigraphic techniques in the diagnosis and management of breast carcinoma.

ANATOMICAL AND PHYSIOLOGICAL CONSIDERATIONS

OF MAMMARY GLAND

ANATOMICAL AND PHYSIOLOGICAL CONSIDERATIONS OF MAMMARY GLAND

A. Anatomic Considerations of Mammary Gland:

The breast consists embryologically and morphologically of a group of exceedingly highly specialized cutaneous glands, and therefore is a constituent element of the superficial layers of the costal region (McVay, 1984).

The mammary gland with its fibrous and fatty second between the interval occupies the tissue in the midclavicular line and the sixth rib and extends in breadth from the parasternal to the midaxillary line. The glandular tissue rests in great part upon the pectoral fascia and to a less degree upon anterior muscle. Superolateral part serratus of mammary gland frequently projects toward axilla as an axillary tail of Spence in relation to pectoralis pectoral axillary lymph nodes major muscle and (Pansky, 1984).

The shape and degree of development of the breast vary with the person, the period of function, sex, and age. In male, breasts are flattened undeveloped. In females, virginal breast is almost hemispherical, in multiparae the breasts become large

and lax, at menopause breasts shrunken and are reduced in size (McVay, 1984).

The skin over the centre of the breast is modified to form the areola and nipple. The colour of both in young subjects usually is rose pink. During pregnancy the colour becomes browner, as the pigmentation never disappears and increases slightly with each succeeding gestation.

The circular areola, a cutaneous zone about 5cm in diameter, has many rounded elevations which are areolar gland of Montgomery. These are isolated sebaceous glands secrete an oily substance to lubricate areola and nipple during lactation.

The nipple or papilla mammae, a conical or wartlike elevation is located in the middle of the areola on the approximate summit of each breast. In young breast the nipple usually lies opposite the fourth intercostal space, but after lactation the breast becomes pendant and the nipple no longer is a guide.

(McVay, 1984).

Nipple externally is covered by keratinized stratified squamous epithelium which is continuous

with that of the adjacent skin. This epithelium rests on a layer of connective tissue and smooth muscle fibres. These fibres contract on tactile stimulation inducing firmness and prominence (Junqueira et al., 1983).

* Structure of Mammary Gland: (Fig. 1,2)

- In Females:

elements the glandular skin Beneath the the breast lie within an areola-fatty subcutaneous tissue. Each mammary gland comprises 15-20 irregular compound tubulo-alveolar type whose lobes of the function is to secrete milk. Each lobe is separated others by dense connective tissue and much from own excretory tissue, and has its adipose The subcutaneous connective tissue further subdivides the lobe into lobules and these into alveoli (McVay, 1984).

The excretory lactiferous ducts about 2-4.5cm long and 15-20 in number, converge toward the nipple when they open independently. Each duct as approaches the base of the nipple represents a fusiform or ampullary enlargement beneath the areola called the lactiferous sinus which acts as a temporary reservoir for the secretion of the gland. Then the duct narrows

enlargement and passes into the nipple beyond the forming opening about 0.5mm in diameter. The lactiferous ducts are lined by stratified squamous epithelium their external openings. Deeper in the gland becomes progressively thinner, with epithelium the layers, until there are only 2 layers fewer cell of cuboidal cells closer to alveolar ducts and alveolar epithelium becomes simple cuboidal, resting on basal myoepithelial of discontinuous layer lamina and cell processes. At the nipple, smooth muscle fibres in circles around lactiferous ducts disposed are and parallel to them (Junqueira et al., 1983).

Supports of Mammary Gland:

The superficial fascia not only forms a general covering for the secreting apparatus but also sends into it partitions which aid materially in supporting glandular as well as the fatty elements. Each duct is surrounded by an area of periductal connective tissue with attachment to the skin, these fibrous extensions were described by Sir Astley Cooper and became known as "Cooper's ligaments". When carcinoma periductal the since glandular area, any invades strands of connective tissue fails to lengthen with enlargement of the gland, the skin over the area becomes retracted (McVay, 1984).

- In Males:

In males, mammary gland is undeveloped throughout life and is only formed of small ducts with little surrounding adipose tissue and fibrous tissue. The nipple is relatively small. It has no suspensory Cooper's ligaments (McVay, 1984).

Blood Supply:

- A. Arteries: (Fig. 3)
- 1. From axillary artery: supreme thoracic, pectoral branch of the thoracoacromial and lateral thoracic arteries which give to external mammary artery.
- 2. From intercostal arteries: cutaneous branches in 3rd, 4th, 5th spaces.
- 3. From internal thoracic artery: perforating branches in 2nd to 4th interspaces.

B. Veins:-

From anastomotic circle around the nipple. Branches pass peripherally from this to axillary, internal thoracic, lateral thoracic and upper intercostal veins.

(Pansky, 1984).

Lymphatic Drainage: (Fig. 4)

A knowledge of the lymph drainage of the breast is extremely important because breast cancer commonly spreads along such channels. In subareolar area there particularly numerous meshwork of lymphatics that widens peripherally to form a dense circumareolar external and internal plexus. From this enormous are the main routes of lymphatic drainage trunks from the breast to the axilla.

- 1. The external trunk passes from subareolar plexus to the outer border of the pectoralis major and receives collaterals from the upper half of the breast.
- 2. The internal trunk from the medial edge of the subareolar plexus, runs downward and laterally to reach the outer border of pectoralis major. It receives tributaries from the lower half of the breast (Last, 1985).

Both trunks terminate in the axillary lymph nodes. There are two accessory routes of lymphatic drainage from the breast to the nodes at the apex of axilla.

1. Transpectoral route begins as retromammary plexus in the loose areolar tissue between the pectoral

fascia and the breast. It empties into subclavicular group of axillary lymph nodes.

2. The retropectoral route is a lymphatic pathway found in about one-third of subjects and drains the superior and internal portion of the breast. It empties also into subclavicular axillary lymph nodes (McVay, 1984).

From these plexuses lymph from the most the central and lateral parts of the breast drains pectoral group of axillary nodes. The upper part of breast drains into subclavicular group. The axillary tail when present, drains into scapular group. The medial part of the breast drains into internal mammary (parasternal) 1ymph nodes. Also some lymphatics pass from the medial part crossing the median plane to communicate with submammary plexus of the opposite breast. From inferomedial part lymphatics communicate with lymphatics the linea alba and anterior wall of rectus sheath peritoneal lymphatic plexus, and finally along falciform ligament of the liver. Also lymphatics pass from inferomedial portion with breast to communicate the subdiaphragmatic plexus to the abdominal lymph nodes (Mahran al., 1977). This explains how breast carcinoma gives

malignant nodules at the umbilious and metastases in the liver (Abou-Zeid, 1984).

- Nerve Supply:-

From anterior and lateral cutaneous branches of 2nd to 6th intercostal nerves (McVay, 1984).

B) Physiologic Considerations of Mammary Gland:-

At birth, the breast is rudimentary and consists essentially of the tiny nipple from which radiates a few ducts. In new-born secretion of a fluid resembling colostrum may occur, probably stimulated by maternal hormones. Little further development occurs until the time of puberty, so the mammary glands are composed of lactiferous sinuses and ramified lactiferous ducts that have small cellular aggregates in their extremities.

During puberty, with increasing amount of ovarian hormones, the mammary gland increases in size and develops a prominent nipple. This enlargement is due to increase in the volume of lactiferous ducts and accumulation of adipose tissue in both interlobar and interlobular connective tissue, with formation of small alveoli in the extremities of the ducts. With the recurrence of menstrual cycle the gland