
ROLE OF MR ANGIOGLRAPHY IN EVALUATION OF PERIPHERAL VASCULAR SYSTEM

Thesis

Submitted In Partial Fulfillment of M.D. Degree in (RADIODIAGNOSIS)

By

AHMED MOHAMED MONIB

M.B.B.Ch., 1984 M.Sc., 1988

SUPERVISORS

Prof. Dr. HODA AHMED EL DEEB

Professor of Radiodaignosis
Faculty of Medicine - Ain-Shams University

Dr. AHMED KAMAL EL DORRY

Assistant Professor of Radiodiagnosis Faculty of Medicine - Ain-Shams University


Faculty of Medicine Ain-Shams University

1993

To MY PARENTS AND MY FAMILY

(Ghada, Karim & Farrah)

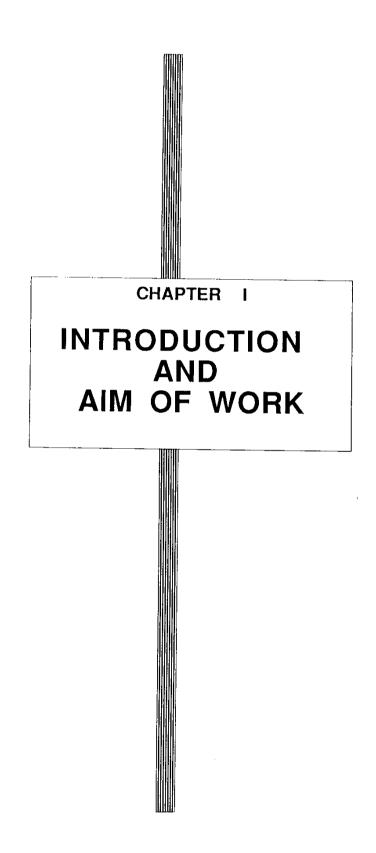
My thanks are also sincerely extended to:

Ms. Karol Katz, Department of Biostatistics, School of medicine, Yale University for accomplishing this complicated statistical analysis.

Mrs. . Ghada El-Ganzoury my dearest wife and companion during my long journey away from my home country, for her moral support and patience.

All professors and staff members as well as my colleagues in the Radiodiagnosis departments in Ain Shams and Yale universities.

Ahmed Mohamed Monib 1993


CONTRNTS

1 -Introduction and aim of work.	7
2 - Anatomical considerations.	9
3 - Hemodynamics.	47
4 - Pathology.	62
5 - Phisical principles of MRA .	83
6 - Material and methods.	141
7 - Results .	155
8 - Illustrative cases .	168
9 - Discussion .	233
10 - Summary and Conclusion.	260
11 - References .	267
12 - Arabic Summary .	283

Figures and Tables Content .

		Pag
	Chapter H: "Anatomical Consideration"	^ ···e
Table (II,1)	Branches of abdominal aorta	12
Fig. II,1	Normal alxlominal aortogram	9
Fig. 11,2	Pelvic arteriogram	11
Fig. 11,3	Common iliac arteriogram	îŝ
Fig. 11,4	Arteriogram showing persistent sciatic A	15
Fig. 41,5	Low take off of profunda femoris A	17
Fig. 11,6	Constant Constant A contains	19
	Superfecial femoral A occlusion	19
Fig. 11,7	Common femoral arteriogram	
Fig. II.8	Bilateral superfecial femoral arteriogram	21
Fig. II.9	Distal lower extremity arteriogram Anatomic variation of trifurcation	21
Fig. II,10		23
Fig. 11,11	AP of foot vessels (schematic)	26
Fig. 11,12	Lateral view of foot vessels	26
Fig. 11,13	Parietal pathway of collaterals in aorto-iliac occlusion	30
Fig. II,14	Visceral pathway of collaterals in aorto-iliac occlusion	32
Fig. II,15	Oclusion of popliteal artery	34
Fig. II,16	occlusion of anterior and posterior tibial arteries	34
Fig. II,17	Secondary arch of the foot	36
Fig. 11,18	occlusion of posterior tibial artery	36
Fig.from II,19-II,36	occlusion of posterior tibial artery MRA axial anatomy of the lower limb	38-4
Table III,1	Chapter III "Hemodynamics" Peak velocities in the vessels of lower limbs	48
Fig. III,1	Laminar flow	
	Plug flow	49
Fig. 111,2	Ting now	51
Fig. 111,3	Flow pattern in curved vessel	51
Fig. III,4	Flow pattern in side branches	53
Fig. III,5	Complex flow	55
Fig. 111,6	Flow patterns at the site of stenosis	55
Fig. 111,7	Triphasic wave pattern	57
Fig. 111,8	Changes in velocity distribution during cardiac cycle	59
	Chapter IV: "Pathology"	
Table (IV,1)	Frequency of involvement of the vessels in upper of	
(lower limbs with vascular malformation	77
Ein (VII)	Chapter V "Physical principle of MRA"	0.2
Fig. (V,1)	Washout circus in 3E and OKB	83
		85
	Steady state magnetization	87
		89
Fig. (V,5)	Intravoxel phase coherence	92
Fig. (V,6)	Effect of laminar flow an vascular signal	95
Fig. (V,7)	Cardiac gating	
Fig. (V.8)		
	G	
	fluoriaming claim in MCTCA	
Fig. (V.15)	Overlapping slabs in MOTSA	120
	Overlapping slabs in MOTSA Demonstration of MOTSA Maximum intersity projection	120 120 120
Fig. (V,6) Fig. (V,7)	Effect of laminar flow an vascular signal Cardiac gating Vessel geometry Flow velocity on signal Surface coil on signal SAT on image quality Concept of walking SAT Contrast behavior in the three TOF methods Saturation effects in 3D TOF	85 87 89 92 95 10 10 10 11 11 11

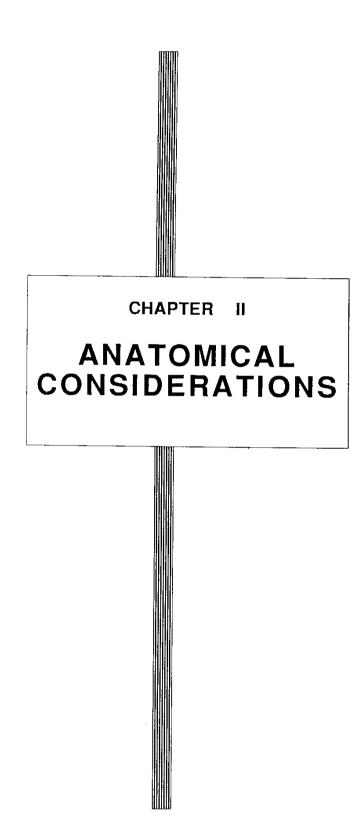
Fig. (V.18)	Bipolar flow encoding gradient	Page 126
Fig. (V.19)	Phase behavior of stationary & moving spins during	,
Fig. (V.20)	application of bipoler gradient Reversed bipolar gradients	
Fig. (V.21)	Aliasing artifact	130 132
Fig. (V.22)	Black blood MRA	136
		150
Table (VI,1)	Chapter VI "Material and Methods" Patient characteristics	1.40
Fig. (VI,1)	Pulse volume recording	142
	Chapter VII !!Decorate!	
Table (VII,1)	Chapter VII "Results" Accuracy of MRA in detecting significant stenosis	155
Table (VIII,2)	True discrepancies between MRA & DSA	
Table (VIII,3)	Palse discrepancies between MRA & DSA	- 158
Table (VIII,4)	Inter observer reliability in detecting significant stenosis	160
Table (VIII,5)	Intra observer reliability in detecting significant stenosis	160
Table (VIII,6)	Visuar segments detected either by MRA or DSA	161
Table (VIII,7)	Accuracy of MRA in detecting vessels	162
Table (VIII,8)	inter observer reliability in detecting vessels	
Table (VIII,9)	Intra observer reliability in detecting vessles	
Table (VIII,10)	Accuracy of MRA in grading vascular stenosis	
Table (VIII,11)	mtra observer reliability in grading stenosis	
Table (VIII,12)	Inter observer reliability in grading stenosis	. 165
Table (VIII,13)	Types of vascular malformations on the basis of SE	167
_	Chapter VIII, Illustrative cases	
Case 1	(Fig. VIII,1 - VIII,6)	160 170
Case 2	(Fig. VIII,7 - VIII,9)	108-170
Case 3	(Fig. VIII,10 - VIII,15)	1/1-1/2
Case 4	(Fig. VIII,16 - VIII,22)	177 100
Case 5	(Fig. VIII,23 - VIII,26)	101 100
Case 6	(Fig. VIII,27 - VIII,28)	
Case 7	(Fig. VIII,29 and VIII,30)	103
Case 8	(Fig. VIII,31 - VIII,39)	184
Case 9	(Fig. VIII,40 and VIII,41)	100-109
Case 10	(Fig. VIII,42 - VIII,48)	190-191
Case 11	(Fig. VIII,49 - VIII,61)	194-193
Case 12	(Pig. VIII.62 - VIII 69)	202 207
Case 13	(Fig. VIII,70 - VIII,72)	203-200
Case 14	(Fig. VIII,73 - VIII,78)	207-206
Case 15	(Fig. VIII.79 - VIII 78)	212 214
Case 16	(Fig. VIII,83 - VIII,86)	213-214
Case 16	(Fig. VIII,78 - VIII,93)	213-217
Case 17	(Fig. VIII,94 - VIII,98)	218-221
Case 18	(Fig. VIII,99 - VIII,102)	222-224
Case 19	(Fig. VIII, 103 and VIII, 104)	
Case 20	(Fig. VIII,105 and VIII,106)	227
Case 21	(Fig. VIII)	
Case 22	(Fig. VIII,108 and VIII,109)	229
Case 23	(Fig. VIII,110 - VIII,114)	230
Case 24	· 0. · · · · · · · · · · · · · · · · · ·	251-232
Fig. (V. 1)	Chapter X "Summary and Conclusion"	
Fig. (X,1)	Scheme of role of MRA in evaluation of PVOD	263

INTRODUCTION AND AIM OF WORK

Contrast angiography used to be the only method for evaluating vascular systems for decades. Recently, new noninvasive modalities as ultrasound duplex imaging and scintigraphy have joined contrast angiography in this task, however they could not totally replace it due to its high spatial resolution and high accuracy in reflecting any vascular lesion.

For more than 30 years it has been known that magnetic resonance (MR) could be used to study blood flow. The flow of blood through magnetic field gradients and radiofrequency fields produces signal changes that can be used to distinguish blood vessels from surrounding stationary tissue. Until recently, the clinical applications of MR flow imaging techniques have been hindered because tomographic MR images are of limited utility for evaluating complex vascular anatomy. The field of MR angiography attempts to overcome this limitation by creating images that depict blood vessels in a projective format similar to conventional invasive angiogram, but without the need for ionizing radiation or a contrast agent.

Magnetic resonance imaging has many of the advantages offered by other imaging modalities without some of the associated disadvantages. Similar to ultrasound, MR is nonionizing and capable of imaging in multiple planes. Unlike ultrasound, MR is not dependent


on operator's skills or the habitus of the patient, and can penetrate bone without significant attenuation such that the underlying tissue can be clearly imaged. MR provides excellent spatial resolution similar that of computed tomography (CT) and far better soft tissue contrast resolution. Intravenous injection of contrast media is unnecessary with magnetic resonance since flowing blood provides natural contrast between blood and cardiovascular structures.

Magnetic resonance angiography (MRA) was first applied in the mid 1980's on the carotid arteries, but its application on the peripheral vascular system is not well established due to the nature of blood flow in this high resistance vascular circuit making the imaging process difficult.

This work will include the ideal MRA methods for proper imaging of the peripheral vascular system. Moreover, accuracy, sensitivity and specificity of MRA in evaluating peripheral vessels will be discussed, with greater stress on arterial occlusive diseases being the most common lesions affecting this system. Reliability of MRA as a new method for evaluation of peripheral vascular system will be mentioned.

The aim of this work is to highlight the value of MRA as a new noninvasive modality for imaging the arteries of the upper and lower extremities and finding whether MRA could become the primary method for evaluation of peripheral vascular system in the future.

Diseases of the arterial vascular system of lower limbs are usually due to lesions affecting the arterial tree beginning from the abdominal aorta and more distally. Thus, in this section we are going to give a brief hint on the vascular anatomy of the aorta, iliac arteries and the arterial tree below the iguinal ligament from the angiographic point of view with no much details on the relationship of these vessels to the surrounding structures, unless essential to this study, and with more stress on the vascular branches that contribute in the formation collateral circulation in cases of arterial occlusion. Arterial branches which does not appear in MR angiography are mentioned briefly.

Abdominal Aorta: (Fig.II, 1)

The abdominal aorta extends from the diaphragmatic hiatus (T12-L1 intervertebral disc space to the aortic bifurcation (L4). In the young adult, the abdominal aorta follows relatively straight course. In older individuals there is often tortuousity and axial rotation that may displace the orifices of the aortic branches.

The abdominal aorta lies anterior to the upper four lumbar vertebral bodies and slightly to the left of midline. Values for the size of the lumen of the aorta in normal adult patients have been suggested by *Goldburg and Lehman in 1970*. The internal diameter at the xyphoid level should be about 25 mm. and it should decrease to approximately 15 mm at the bifurcation. Although the limits of normal are quite broad, any increase in the size move than 30 mm is abnormal.

Branches of the aorta may be classified into unpaired vessels (visceral branches) and lateral paired vessels (parietal branches), with the

middle sacral artery as the terminal branch. *Table (II,1)* outlines the level of the origin and localization of these branches.

Name of Branch	Level of Origin	Localization
Inferior phrenic As.	D ₁₂	frontal, bilateral
Lumbar arteries	L1 - L4	dorsolateral bilateral
Celiac trunk	D ₁₂ - L ₁	frontal
Middle suprarenal A.	L ₁ - L ₂	bilateral
Superior mesenteric A.	L1 - L2	frontal
Renal A.	L1 - L2	bilateral
Testicular(ovarian) A.	L2 - L3	frontal, bilateral
Inferior mesenteric A.	L3 - L4	frontal

(Neiman and Yao, 1985)

Iliac Arteries: (Fig.II,2)

At the level of the fourth lumbar vertebra, the aorta bifurcates into the left and right common iliac arteries. The left common iliac artery is usually shorter than the right. They do not give off any branches. The common iliac arteries divide into external and internal iliac arteries at the level of the first sacral vertebra.

External Iliac Artery:

The external iliac artery is larger than the internal iliac artery except in the fetus, in whom the internal iliac arteries give rise to the umbilical arteries. (Kadir, 1986).