DETECTION OF HEMOPHILIA A CARRIERS AMONG EGYPTIANS

Thesis

submitted for partial fulfilment of the requirement for

the M.D. Degree in Clinical Pathology

Ву

Azza Mohamed Sadek El Danasoury

Under the supervision of

Prof. Wagih Nagib Ibrahim

Professor of Olinical Pathology
Ain Shan: University

Prof. Ahmed Samy Khalifa

Professor of Pediatrics
Ain Shams University

Prof. Sawsan Abd El-Moety Fayad

Professor of Clinical Pathology Ain Shams University

FACULTY OF MEDICINE

AIN SHAMS UNIVERSITY

1991

ACKNOWLEDGEMENT

I wish to express my deep gratitude to Prof. Wagih Nagib Ibrahim, Professor of Clinical Pathology, Ain Shams University for his meticulous supervision, scientific support and judicious guidance despite many other demands on his time.

I am very grateful to Prof. Ahmed Samy Khalifa, Professor of Pediatrics, Aln Shams University for his kind supervision, continuous fatherly encouragement throughout the course of this thesis.

I find no words to express my gratitude to Prof. Sawsan Abd El-Moety Fayad, Professor of Clinical Pathology, Ain Shams University for her constant advise, enthusiastic support and great help without which this work would not have come to light.

I also wish to thank Prof. Sawsan Elwan, Professor of Clinical Pathology, Assiut University. She was very kind to give me the opportunity to work in her department. I will always remember her valuable advices.

I am greatly indebted to Dr. Refaat Gaballah, Assistant Professor of Clinical Pathology, Ain Shams University for his honest assistance and precious guidance during most of the stages of this work.

My sincere thanks are due to Dr. Salwa Abou El-Hana, Lecturer of Clinical Pathology, Ain Shams University for her helpful suggestions while revising fully the manuscript.

I also wish to express my thanks to Dr. Monamed El-Kabsh, Lecturer of Clinical Pathology, Assiut University. He helped me very much to get access to hemophilic families attending the Clinical Pathology Department, Assiut University Hospital.

I would like to thank the members of the Computer Unit, Faculty of Agriculture, Ain Shams University for helping in statistical analysis of the results.

This work was partially supported by a grant from the Academy of Science and Technology, Cairo, Egypt.

LIST OF ABBREVIATIONS

A: Agenine

AHF: Antinemobnilio factor

AIDS: Adquired Immunodeficiency Syndrome

APTT: Activated partial thromboplastin time

ang: Anganane

pp: Base pair

O: Sytosine

Caff: Caferum fons

oDNA: Complementary DNA = popy DNA

CPM+: Cross reacting material positive

CPMT: Cross reacting maternal negative

CP: Ceruloplasmin

Dalton

DNA: Debyymidanudieta acta

Electroimmunoassay

ELISA: Enzyme linked immunosorbent assay

f: Relative reproductive fitness

FV: Factor v

FVIII: Factor vIII

VIII:Ag: Factor VIII antigen

VIII:0: Factor vIII coagulant activity

FVIII R Ag: Factor VIII related antigen

FVIII/VWF: Factor vIII/von Willebrand

FIX: Factor IX

FX: Factor X

FXII: Factor XII

FIA: Fluorescent immunoassay

G: Guanine

GP: Glycoprotein

G6PD: Glucose 6 phosphate dehydrogenase

HIV: Human immunodeficiency virus

IRMA: Immunoradiometric assay

IRP: International reference preparation

IS: International standard

IU: International unit

Kb: Kilobase

KDa: Kilodalton

Km: Concentration of substrate at which the

reaction rate is one half of the maximum

Lea: Lewis antigen

Mr: Relative molecular weight

mRNA: Messenger RNA

RFLP: Restriction fragment length polymorphism

RIA: Radioimmunoassay

RNA: Ribonucleic acid

SD: Standard deviation

SDS PAGE: Sodium dodecyl sulfate-polyacrylamide gel

electrophoresis

T: Thymine

t 1/2: Half life

Vmax: Maximum velocity

vWF: von Willebrand factor

In natural logarithms

vWF:Ag: von Willebrand factor antigen

vWD: von Willebrand's disease

WHO: World Health Organization

TABLE OF CONTENTS

introduction and Aim of The Work
Review of Literature
SECTION I: Factor VIII and Hemophilia A
- Magnitude of the problem of hemophilia A
- Nomenclature of factor VIII/ von Willebrand complex
- Cloning and characterization of the factor VIII gene
- Factor VIII19
Molecular structure
Synthesis26
Activation and Inactivation29
Function36
Assay for FVIII coagulant activity42
- von Willebrand factor48
Molecular structure48
Biosynthesis50
Assay for vWF antigen
- Molecular pathology of hemophilia A56
SECTION II: Carrier Detection in Hemophilia A63
- Importance of carrier detection63
- Types of carriers of hemophilia A66
- Outline of methods of carrier detection68
- Use of pedigree data in carrier detection70
- Use of laboratory data in carrier detection77
Factor VIII variables used

Statistical handling of laboratory data86
Practical considerations in selection of reference groups
- Use of gene analysis in carrier detection101
Subjects and Methods107
Results138
Discussion
Summary and Conclusions204
Recommendations
References
Arabic Summary.

INTRODUCTION AND AIM OF THE WORK

INTRODUCTION AND AIM OF THE WORK

Hemophilia A (classic hemophilia) is the commonest of the genetic coagulation defects. It is due to the functional deficiency of factor VIII coagulant activity (VIII:C). The clinical severity of the disease usually correlates with the level of VIII:C, the spectrum of defects ranging from mild to severe (Forbes and Madhok, 1991).

Hemophilia A is inherited as an X-chromosome linked disorder and thus limited almost exclusively to males. All the sons of affected hemophilic males are normal while all their daughters are obligatory carriers of the factor VIII defect. Sons of female carriers have a 50 percent chance of peing affected while daughters of carriers have a 50 percent chance of being carriers themselves (Roberts and Jones, 1990).

Despite the great advance in treatment of hemophiliacs, the disease still is a serious one that has profound implications on the individual affected, his family and society in general (Markova et al., 1986).

Detection of carriers is an important aspect of genetic counseling in nemophilia A and has received special attention in the last decade particularly as prenatal

diagnosis of hemophilia is starting to be successfully available, though in few centers (White and Shoemaker, 1989).

Recently, methods that determine the genotype of carriers directly from their DNA have been available (Lillicrap et al., 1987). However, in view of the inherent limitations of these DNA methods, there is still a place for the conventional methods which use the laboratory bioaasay data to detect carriers of hemophilia A (Graham et al., 1985 and White and Shoemaker, 1989).

This work aimed to introduce, in our laboratory, a method for detection of hemophilia A carriers among Egyptians. This method is based on simultaneous evaluation of VIII:C and vWF:Ag measurements in combination with genetic risk estimated from pedigree analysis.

REVIEWOF

SECTION I: FACTOR VIII AND HEMOPHILIA A

MAGNITUDE OF THE PROBLEM OF HEMOPHILIA A

Hemophilia A (classic hemophilia) is a hereditary bleeding disorder that is due to defective and/or deficient FVIII molecule (Roberts and Jones, 1990). It is known to be a worldwide disorder without ethnic or geographic limitations (Graham, 1979). It occurs almost exclusively in males. It has an estimated incidence of 1 in every 10000 male births (Antonarakis et al., 1987).

The inheritance pattern of hemophilia A is shown in table (1).

Table (1): Inheritance Patterns for Hemophilia A

	χh	Y
	X Xh	XY
	(Carrier female)	
Х	X Xh	ΧY
	(Carrier female)	(Normal male)
	Normal r	nale
	X	Y
χħ	Xh X	Xh Y
	(Carrier female)	(Hemophilic male)
X	хх	ХҮ
	(Normal female)	(Normal male)

 X^h = abnormal X chromosome with hemophilic gene.

Central Library - Ain Shams University