PREDICTING PRODUCTIVITY RATE AND UNIT PRICE FOR PIPELINE PROJECTS USING A NEURAL NETWORK MODEL

BY AHMED SAAD EL-DIN MOHAMED HASAN

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the degree of
MASTER OF SCIENCE

in
CIVIL ENGINEERING (Structures)

624.1 A.S.

Under the Supervision of

Prof. Dr. Moheeb El-Said Ibrahim

Dr. Mahmoud Abdel-Salam Taha

Professor of Construction Engineering and Management - Cairo University

Lecturer - Cairo University

61900

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT

July 1999

PREDICTING PRODUCTIVITY RATE AND UNIT PRICE FOR PIPELINE PROJECTS USING A NEURAL NETWORK MODEL

AHMED SAAD EL-DIN MOHAMED HASAN

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the degree of
MASTER OF SCIENCE
in
CIVIL ENGINEERING (Structures)

Approved by the Examining Committee

Prof. Moheeb El-Said Ibrahim

Professor of Construction Engineering and Management Cairo University, Thesis main advisor

Associate Prof. Amir Baioumy Ibrahim Kalil
Associate Professor, Structural Engineering Department,

Faculty of Engineering, Cairo University

Dr. Mohamed Abdel-Lateaf Bakry

Director of Planning and Information Technology Social Fund for Development

> FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT July 1999

> > iii

TABLE OF CONTENTS

Chapter	
LIST OF TABLESviii	9
LIST OF FIGURES	
ACKNOWLEDGEMENTxii	
ABSTARCTxii	
xiii	
1. INTRODUCTION	
1.1. Problem Definition.	
1.2. Scope of Work	
1.3. Research Objectives	
1.4. Methodology	
1.5. Thesis Organization	
3	
2. LITERATURE REVIEW	
2.1. Historical Background of Neural Networks	
2.2. Neural Networks in Construction Engineering and Management	
3. ARTIFICIAL INTELLIGENCE AND NEURAL NETWORKS	
3.1. Artificial Intelligence	
3.1.1. Definition	
3.1.2. Definition and Importance of Knowledge	
3.1.3. Acquisition of Knowledge	
3.1.4. Applications of Artificial Intelligence in Engineering	
3.2. Artificial Neural Networks	
3.2.1. What is an Artificial Neural Network?	
3.2.2. How Does a Neural Network Operate?	
3.2.3. Connection Schemes	
3.2.3.1. Single-Layer Net	
13	

	3.2.3.2.	Multi-Layer Net	17
	3.2.3.2.	Fully Connected Net	17
	·	Special Connection Schemes	18
	3.2.3.4.	tion of Neurons	20
	3.2.4. Opera	Туре	21
	3.2.5. Signal	ing Types	24
		Continuous Functional Mapping	24
	3.2.6.1.	Discrete Output	25
	3.2.6.2.	Pattern Classifiers	25
	3.2.6.3.	Pattern Classifiers	26
	3.2.6.4.	Associative Networks	27
	3.2.7. Settin	ng the Weights	27
	3.2.7.1.	Supervised Training	27
	3.2.7.2.	Unsupervised Training	28
	3.2.7.3.	Fixed-Weight Nets	
	3.2.8. Why	are Artificial Neural Networks Applicable in Civil	26
	Engine	ering?	.,,0
			ISING A
4.		NG PRODUCTIVITY AND UNIT PRICE U	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
		ETWORK MODEL	
	4.1. Introduction	on	ادا
	4.2 Design Sto	eps	
	4.2.1. Firs	st Stage: Data Collection and Preparation	دد
	4.2.1.1	Identification of the Most Important Factors	33
	4,2.1.2	. Collecting Data from the Construction Field	35
	4.2.1.3	Data Preparation	36
	4.2.2. Sec	cond Stage. Model Design	.,
	4,2.2,1	· · · · · · · · · · · · · · · · · · ·	71
	4.2.2.2	1 A hit a attura	72
	422 Th	aird Stage: Model Training	74
	4.2.3.		7-
	7.4.3.	() () () () () () () () () () () () () (7/
	424 Fc	ourth Stage: Model Testing	/6

4.2.4.1. Testing the Network and Determining the %Error76
4.2.4.2. Determination of the Optimum Network
4.2.5. Fifth Stage: Model Running80
4.2.5.1. Running the Model for Future Projects' Prediction80
5. SUMMARY AND CONCLUSIONS
5.1. Summary of the Research Work83
5.2. Conclusions
5.3. Recommendations for Future Work85
REFERENCES86
APPENDICIES
APPENDIX (A)
7.1. Survey for the factors affecting productivity rate and unit price.
pipeline installation projects
A-2. Data collection sheet for productivity rate and unit price for pipeling
installation projects
APPENDIX (B)
B-1: Collected Data
B-2: Collected Data after being converted to a numerical scale
APPENDIX (C)
C-1: Training and testing group (TTGR-1)
C-2: Training and testing group (TTGR-2)
C-3: Training and testing group (TTGR-3)
C-4: Training and testing group (TTGR-4)
C-5: Training and testing group (TTGR-5)
C-6: Training and testing group (TTGR-6)
C-7: Training and testing group (TTGR-7)
C-8: Training and testing group (TTGR-8)
C-9: Training and testing group (TTGR-9)

C-10: Training and testing group (TTGR-10)143
C-10: Training and testing group (11011)
APPENDIX (D)
D-1 – D-24: Results from the different experiments of neural network
orahitectures

LIST OF TABLES

l able Page
4.1. Average productivity and unit price with respect to the project size38
4.2. Corresponding numerical scale for the project location
4.3. Corresponding numerical scale for the owner type41
4.4. Average productivity rate and average unit price with respect to the owner
type42
4.5. Rating scale for all subjective factors
4.6. The project complexity and the corresponding average productivity rate and
average unit price43
4.7. Description of the crews used in the sample projects
4.8. Corresponding numerical scale for the Crew ID51
4.9. Number of sample projects in each type55
4.10. Types of pipelines used in the sample projects55
4.11. Corresponding numerical scale for the pipe type57
4.12. Standard diameters for the different types of pipes used58
4.13. Corresponding numerical scale for the soil type62
4.14. Results of the 24 experiments for determining the optimum network
architecture78
4.15. Sample project

LIST OF FIGURES

Figure	Da
3.1. A simple artificial neural network	Page
3.2. A very simple neural network	13
3.3. A single-layer neural net	14
3.4. A multi-layer net	10
3.5. Fully connected net	17
3.6. Network with non-full connectivity.	10
3.7. Non-layered network	19
3.8. Main elements of the neuron.	19
3.9. Pulse frequency coded signal type	20
3.10. Continuous change value pulse type	21
3.11. Discrete change value pulse type	22
3.12. Continuous functional mapping.	23
3.13. Classification mapping	24
4.1. Design steps for the neural network model.	40
4.2. Relationship and correlation between project size and productivity rate	.32
4.3. Relationship and correlation between project size and unit price	.20
4.4. Average productivity rate with respect to project location	.39
4.5. Average unit price with respect to project location	. 1 0
4.6. Relationship between average productivity rate and the number of hours p	.40
shift	42
4.7. Relationship between average unit price and the number of hours per shift.	43
4.8. Variation of average productivity rate with respect to the number of shifts	***
day	
4.9. Variation of average unit price with respect to the number of shifts per	.43
day	45
4.10. Variation of average productivity rate with respect to the supervision	43
quality	46
	711

41 represt to the supervision quality47
4.11. Variation of average unit price with respect to the supervision quality47
4.12. Variation of average productivity rate with respect to the work
complexity
4.13. Variation of average unit price with respect to the work complexity48
4.14. Variation of average productivity rate with respect to the crew ID based on
a regular 8-hour shift
4.15. Variation of average productivity rate with respect to the average crew
skill52
4.16. Variation of average unit price with respect to the average crew skill52
4.17 Variation of average productivity rate with respect to the equipment
maintenance quality
4.18 Variation of average unit price with respect to the equipment maintenance
quality54
4.19 Variation of average productivity rate with respect to the pipe type
4.20 Variation of average unit price with respect to the pipe type
4.21 Varietion of average productivity rate with respect to the pipe diameter of
the water nine types
4.22 Variation of average unit price with respect to the pipe diameter of the water
nine types
4.23 Variation of average productivity rate with respect to the pipe diameter of
the firel and gas pipe types
4.24 Variation of average unit price with respect to the pipe diameter of the fuel
and gas pipe types
4.25 Variation of average productivity rate with respect to the reliability of
materials suppliers
1.26 Variation of average unit price with respect to the reliability of materials
cumpliare
4.27 Variation of average productivity rate with respect to the soil type
4.28 Variation of average unit price with respect to the soil type
4.29 Variation of average productivity rate with respect to excavation depth04
4.30. Variation of average unit price with respect to excavation depth
1000

4.31. Variation of average productivity rate with respect to the status of the	_
ground water level	;
variation of average unit price with respect to the status of the group.	d water
level	66
7.33. Variation of average productivity rate with respect to risk	
variation of average unit price with respect to risk	60
4.55. Sequence of activities for pipeline installation.	
4.36. Distribution of productivity rate data for the sample projects	09
4.37. Distribution of unit price data for the sample projects	69
P Projects	7.1

