Role of 64 MDCT Angiography in Quantification of Coronary Artery Luminal Stenosis in Patients with Ischemic Heart Disease Comparative Study with Coronary Angiography

Thesis

Submitted for Partial Fulfillment of M.D In Radiodiagnosis

By Rasha Tolba Khattab

M.B.B.Ch., M.Sc Radiodiagnosis Faculty of Medicine - Ain Shams University

Under Supervision of

Prof. Dr. Hanan Mohamed Issa

Professor of Radiodiagnosis Faculty of Medicine - Ain Shams University

Dr. Sherif Hamed Abou Gamrah

Assistant Professor of Radiodiagnosis Faculty of Medicine - Ain Shams University

Dr. Yasser Gomaa Mohamed

Assistant Professor of Cardiology Faculty of Medicine - Ain Shams University

Dr. Reem Hassan Bassiouny

Lecturer of Radiodiagnosis
Faculty of Medicine - Ain Shams University

Faculty of Medicine Ain-Shams University 2015

Tist of Contents

Subject	Page No.
List of Abbreviations	i
List of Tables	iii
List of Figures	iv
Introduction	1
Aim of the Study	3
Review of Literature	
 Coronary Circulation Anatomy Pathogenesis and Clinical Aspects of Ische Heart Disease Physical Considerations 	mic 54
Patients and Methods	78
Results	97
Illustrative Cases	108
Discussion	118
Summary	134
Conclusions	138
References	139
Arabic Summary	<u> </u>

Tist of Abbreviations

3D 3 dimensional

AHA American heart association

AMI Acute myocardial infarction

Ao Aorta

BMI Body mass index

CAD Coronary artery disease

CTA Computed tomographic angiography

ECG Electro cardiogram

IHD Ischemic heart disease

IVUS Intravascular ultrasonography

LA Left atrium

LAA Left atrial appendage

LAD Left anterior descending

LCX Left circumflex artery

LM Left main coronary artery

LV Left ventricle

MDCT Multidetector CT

MIP Maximum intensity projection

MO Marginal obtuse

MPR Multiplanar reformat

MSCT Multislice CT

NPP Negative predictive value

P value Probability value

Tist of Abbreviations (Cont...)

PA	Pulmonary artery
PDA	Posterior descending artery
PPV	Positive predictive value
QCA	Quantitative coronary angiography
QCT	Quantitative computed tomography
RA	Right atrium
RCA	Right coronary artery
ROI	Region of interest
RV	Right ventricle
SD	Standard deviation
SSD	Surface shaded display
VRT	Volume rendering technique

Tist of Tables

Table No.	Title	Page No.
Table (1):	Probability of CAD in relation to the cascore	
Table (2):	Effect of Risk factors	98
Table (3):	Comparison between QCTA & QCA in the Left anterior descending artery (L	
Table (4):	Comparison between QCTA & QCA in the Left anterior descending artery (I	
Table (5):	Comparison between QCTA & QCA in the right coronary artery (RCA)	
Table (6):	Sensitivity and specificity of the tech in quantification of stenosis in the LAD and LCX	RCA,
Table (7):	Comparison between sensi specificity, positive predictive value negative predictive value as a funct severity of stenosis	e and ion of

List of Figures

Figure No.	. <u>Title</u>	Page No.
Figure (1):	Coronary arteries	5
Figure (2):	N= non-coronary cusp, R= right coronary cusp, L= left coronary cusp	-
Figure (3):	Conventional origin of coronary ar Thin-slab maximum-intensity-proj CT image	ection
Figure (4):	Volume-rendered CT image of heart .	8
Figure (5):	Normal right coronary artery (RC right atrioventricular groove	
Figure (6):	Left: RCA comes off the right sir Valsalva Right: Conus artery come directly from the aorta	es off
Figure (7):	The large acute marginal branch supplies the lateral wall of the right ven	, ,
Figure (8):	Axial thin maximum-intensity-projection image	
Figure (9):	Cardiac veins	18
Figure (10):	Axial image obtained by 64-slice MD	OCT 20

Figure No.	Title	Page No.
Figure (11):	Multiplanar reconstruction	21
_	Curved multiplanar reconstruction right coronary artery	
Figure (13):	The MIP image of the right conartery	
Figure (14):	A maximal intensity proj demonstrating a normal right con artery	ronary
Figure (15):	A maximal intensity proj demonstrating a normal left main con artery	ronary
Figure (16):	The white-yellow color assigned ribs makes the image of the chest similar to the actual anatomy	cage
_	3D volume rendering is the most comethod of display and assumes exvisualization of an object, much viewing a statue in a museum	kternal 1 like
Figure (18):	By increasing the opacity value of coronary tree, decreasing the opac contrast inside the cavities and making myocardium completely transparent	ity of ng the

Figure No.	. Title	Page No.
Figure (19):	Electronic casts" of the left heart ca The relationships between cavitie easily appreciated	es are
Figure (20):	Virtual endoscopy	29
Figure (21):	3D endocardial surface modality	30
Figure (22)	Left coronary artery with its branch seen on a 3D (left) and a multi reconstruction (MPR) of its prosegment (right).	planar oximal
Figure (23):	Short (A) and long (B) normal variately left main (LM) coronary artery	
Figure (24):	Anatomical relationships of left main coronary artery.	
Figure (25)	Anatomical relationships of the prosegments of the main branches of the coronary artery	ne left
Figure (26): Anatomy of marginal obtuse branches	
Figure (27):	Left circumflex (LCx) artery	36

Figure No.	. Title	Page No.
Figure (28)	: Intermediate (Int) coronary arteries two different subjects: in case B, the is large, reaching the left margin heart	vessel of the
Figure (29):	Anatomy of the right coronary artery	40
Figure (30):	Anatomy of the distal right coronary	artery 40
Figure (31):	Coronary CT anatomy	41
Figure (32)	: The large acute marginal branch supplies the lateral wall of the ventricle	right
Figure (33): Anatomical dominance of the coronary system where the right corartery (RCA) gives origin to the podescending artery (PDA) but n posterolateral branches	ronary sterior ot to
Figure (34):	Anatomical dominance of the left corsystem, with a posterior descending a	•
Figure (35):	Anomalous left main coronary artery	47

Figure	No.	Title	Page No.
Figure	((Anomalous origin of the right contentery (RCA) emerging from the left of Valsalva, viewed from 3D verendering images (A, C, D) and of MPR (B), all from the same patient	t sinus olume blique
Figure	(Anomalous origin of the left and descending artery (LAD) from the coronary cusp	right
Figure	8	Anomalous origin of the right contents (RCA) from the left and descending (LAD) coronary artery	nterior
Figure		Patient with anomalous origin of the circumflex artery	
Figure		Patient with anomalous origin of the circumflex artery	
Figure		Examples of anomalous origin of the circumflex artery	
Figure	(42):	Patient with anomalous origin of the anterior descending	
Figure	(43):	Normal histological composition coronary artery vessel wall	

Figure	No.	Title	Page No.
Figure	(44):	Coronary pathology in acute cosyndrome	
Figure	(45)	: Vascular remodeling. As a progresses in size, compensatory coccur in the vessel wall result dilatation and preservation of the cluminal diameter	changes ing in original
Figure	(46):	Diagram demonstrating the difference between histological composition stable and vulnerable plaques	of the
Figure	(46):	Diagram demonstrating the difference between histological composition stable and vulnerable plaques	of the
Figure	(47): I	Multislice CT physical basics	71
Figure	(48):	The AHA 17-segment model coronary tree	
Figure	(49):	Coronary Calcium scoring was assessed using Agatston Score essential step in the study	as an
Figure	(50):	Right anterior oblique (RAO) orie of left anterior descending arter quantitative coronary angiography	y with

Figure No.	Title	Page No.
Figure (51):	Distribution of patients according and sex	_
Figure (52)	: A peripheral soft plaque de eccentrically at the proximal segrethe RCA on CTCA	ment of
Figure (53):	Comparison between QCTA & results in the Left circumflex (LAD)	artery
Figure (54):	Comparison between QCTA and results in the LCX	_
Figure (55):	Comparison between QCTA and results in the RCA	-

Before all, Thanks to Allah, The Most Kind and The Most Merciful.

I would like to express my profound gratitude to **Prof. Dr. Hanan Mohamed Issa,** Professor of Radiodiagnosis, Faculty of Medicine – Ain Shams University, for her most valuable advices and support all through the whole work and for dedicating much of her precious time to accomplish this work. I really have the honor to complete this work under her generous supervision.

I am also grateful to **Dr. Sherif Hamed Abou Gamrah,** Assistant Professor of Radiodiagnosis, Faculty of Medicine – Ain Shams University, for his unique effort, considerable help, assistance and knowledge he offered me throughout the performance of this work.

I also express my deepest thanks to **Dr. Yasser Gomaa Mohamed,** Assistant Professor of Cardiology, Faculty of Medicine, Ain Shams University for his patience, friendly attitude and for being generous with time and effort.

I would like also to express my gratitude to **Dr. Reem Hassan Bassiouny,** Lecturer of Radiodiagnosis, Faculty of Medicine, Ain Shams University. Her energy and enthusiasm to accomplish this work were a real motivation.

Last but not least, I can't forget to thank all members of my family, specially my **Parents** for pushing me forward in every step in the journey of my life.

Introduction

Coronary artery disease is one of the leading causes of death worldwide. In symptomatic patients, diagnosis of the presence and severity of coronary artery disease is critical for determining appropriate clinical management (*Miller et al.*, 2008).

Conventional invasive coronary angiography is currently the diagnostic criterion standard for clinical evaluation of known or suspected coronary artery disease (CAD) (*Kuettner et al., 2004*).

Conventional coronary angiography reveals the extent, location, and severity of coronary obstructive lesions, which are potent predictors of disease outcome and identify high-risk patients who may benefit from revascularization (*Miller et al.*, 2008).

The risk of adverse events is small, but serious and potentially life-threatening sequelae may occur, including arrhythmia, stroke, coronary artery dissection, and access site bleeding (total complication rate, 1.8%; mortality rate, 0.1%). Furthermore, catheterization induces some discomfort and mandates routine follow-up care (*Hoffman at al.*, 2005).

The 64-MDCT scanners have a faster gantry rotation time and faster volume coverage compared with previousgeneration scanners, thus enabling a more examination of the coronary arteries that is less susceptible to respiratory artifact and patient movement compared to previous generations. The small diameter of the coronary segments, complex 3D geometry, and rapid movement through the cardiac cycle represent major challenges for artifact-free CT angiography; all of which challenges could actually be overcome in this ECG-gated multidetector technology with the high spatial and temporal resolution it offers (Dewy et al., 2010).

Still MDCT has still some limitations including radiation exposure, blooming artifacts due to a highly calcified plaque, respiratory motion artifacts, and low heart rate as a perquisite for the study (*Shuman et al., 2008*), which mandates further progression of this technology before it could credibly replace the gold standard technique in quantification of coronary artery luminal stenosis (*Otsuka et al., 2008*).