PREVALENCE OF SMALL INTESTINAL BACTERIAL OVERGROWTH AMONG EGYPTIAN CHILDREN AND ITS IMPACT ON THE NUTRITIONAL STATUS

Thesis
Submitted for Partial Fulfillment of
M.D. Degree in Pediatrics

618.9234 M. A.

Mona Ali Fahmy Khater
M.B., B. Ch, M. Sc
Ain Shams University

60760

Supervised By
Prof. Dr. Gilane Abd El-Hamid Osman.
Prof. of Pediatrics – Ain Shams University

Prof. Dr. Sanaa Youssef Shaaban Prof. of Pediatrics – Ain Shams University

Dr. Moustafa Abd El-Aziz El-Hodhod Assistant Prof. of Pediatrics – Ain Shams University

> FACULTY OF MEDICINE AIN SHAMS UNIVERSITY 1999

ACKNOWLEDGEMENT

I would like to express my deepest gratitude to Dr. Gilane Abd El - Hamid Osman Professor of Pediatrics, Ain Shams University for her valuable suggestions and fruitful instructions throughout this work.

Particular thanks are due to *Dr. Sanaa Y. Shaaban* Professor of Pediatrics, Ain Shams University for her sincere help during this study.

My deepest thanks and appreciation are due to Dr. Moustafa A.A. El-Hodhod Assistant Professor of Pediatrics, Ain Shams University for his guidance and support which were of great help for me through this work.

No words can express my gratefulness to my family for their cooperation and enthusiasm throughout the work.

Finally, my deep thanks are to all the patients and their families since this work would have never been completed without them.

CONTENTS

	Page		
Introduction and Aim of the Work			
Literature Review			
Small Intestinal Bacterial Overgrowth	4		
Role of Normal Flora	7		
Control of The Intestinal Microflora	10		
Definition of SIBO	20		
Etiology and Predisposing Factors	21		
Pathogenesis and Consequences of SIBO	28		
Clinical Picture	33		
Diagnosis of SIBO	39		
Treatment of SIBO	65		
Malnutrition	76		
Prevalence and Epidemiology	76		
Nutritional Assessment	84		
Subjects and Methods	93		
Results	100		
Discussion	125		
Summary and Conclusion	139		
Recommendation			
References			
Arabic Summary			

LIST OF ABBREVIATIONS

Bile Acid Breath Test BABT BHT: Breath Hydrogen Test

 $C_{\mathbf{J}}$: Complement3

CFU : Colony Forming Unit

: Centimeter Cm

ECNExpert Comittee on Nutrition

FAO Food and Agricultural Organization

 FBH_2 Fasting Breath Hydrogen

Gram g

G.L.T.Gastro Intestinal Tract

Hydrogen gas H_2 gas

: Histamine receptor H₂ receptor

HFA Height for Age

H. Pylori Helicobacter Pylori

ICN International Conference on Nutrition

Immunoglobulin Ιg

Kilo calory Kcal KgKilo gram

Lactulose Breath Hydrogen Test LBHT

Lactobacillus rhamnosus L. rhamnosus Mid Arm Circumference MACMeternal and Child Health **MCH**

Mci Milli Curry Minute Min.

Milli Liter ML

MMC : Migrating Motor Complex

M mol : Milli mol

NCHS: National Center for Health Statistics

NNS : National Nutrition Survey

PABA : Para – Amino Benzoic Acid

PEM : Protein Energy Malnutrition

PPM: Part Per Million

RDA : Required Daily Allawances

RTI : Respiratory Tract Infections

SCFAs : Short Chain Fatty Acids

SD : Standard Deviation

SeHCAT : Selenium Homo Cholic - Tauro Acid

Test

SIBO : Small Intestinal Bacterial Overgrowth

T.B. : Tubercle Bacilli

U.S. : United States

WFA : Weight for Age

WFH : Weight for Height

WHO : World Health Organization

XBT : Xvlose Breath Test

Yr : Year

LIST OF TABLES

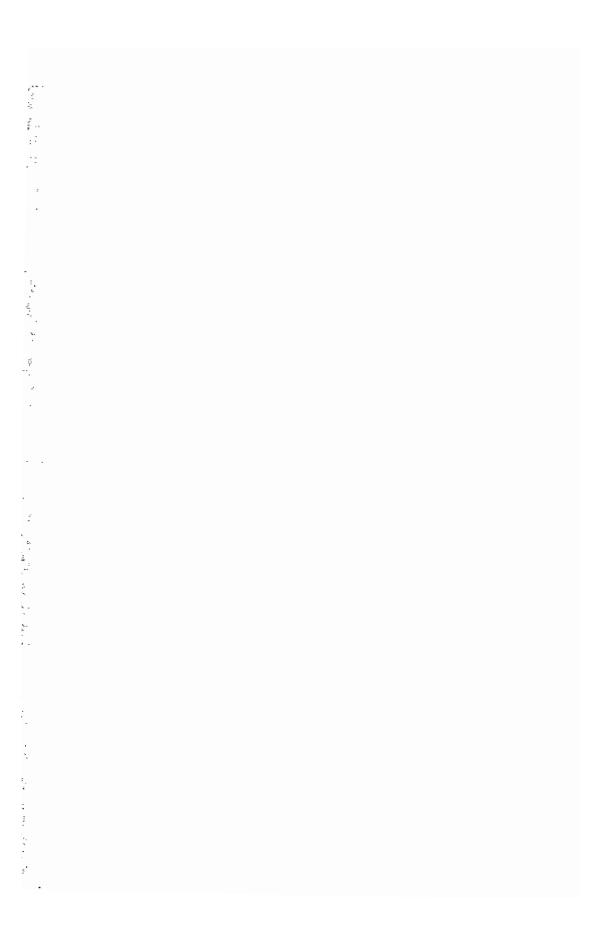

			Page
Table (I)	:	Different types and numbers of bacteria	
		normally found within G.I.T	4
Table (II)	:	Clinical conditions associated with	
. ,		impaired gastrointestinal motility	13
Table (III)	:	Conditions associated with an abnormal	
' /		bacterial flora regardless the age	23
Table (IV)	:	Some causes of small intestinal bacterial	
		overgrowth that are unique for young	
		children	26
Table (V)	;	Wellcome classification of malnutrition	81
` *			82
Table (VI)	•	Gomez classification of mainturition	02
Table (I)		Many culture of some manufaction	
Table (1)	:	Mean values of some quantitative	
		clinical and anthropometric parameters	
		in the studied children	100
Table (2)	:	Other characteristics and associated	
		clinical findings in the studied children	103
Table (3)	:	Age and sex distribution of the studied	
		children	104
Table (4)	:	Frequency of SIBO in the studied	
		children and its relation to sex and age	105
Table (5)	:		
(-)		features among SIBO - negative and	
		SIBO – positive groups	106
		PIDO hostave Broahs	

Table (6)	:	Nutritional and anthropometric findings	
		among SIBO - negative and SIBO -	
		positive groups	107
Table (7)	:	Other qualitative clinical findings among	
		SIBO - negative and SIBO - positive	
		groups	110
Table (8)	:	The mean values of different readings of	
		LBHT for the SIBO - negative cases	113
Table (9)	:	The mean values of different readings of	
		LBHT for the SIBO - positive cases	114
Table (10)	:	Correlation between the first peak and	
		various clinical findings	117
Table (11)	:	Correlation between the second peak	
		and various clinical findings	119
Table (12)	:	Frequency and percent distribution of	
		studied children according to their	
		weight for age (as compared to standard)	120
Table (13)	:	Prevalence of under weight among the	
		studied children and its relation to age	121
Table (14)	:	Frequency of underweight in the studied	
		children according to SIBO – positivity	121

LIST OF FIGURES

			Page
Figure (1)	:	Energy needs of children at different	
		ages and under various conditions	92
Figure (2)	:	Anthropometric and nutritional	
		findings in the whole study group	102
Figure (3)	:	Anthropometric and nutritional	
		findings among SIBO - negative and	
		SIBO – positive groups	109
Figure (4)	:	Some clinical findings among SIBO -	
		negative and SIBO - positive groups	112
Figure (5)	:	Mean values of different readings of	
		LBHT for SIBO – negative cases	114
Figure (6)	:	Mean values of different readings of	
		LBHT for SIBO – positive cases	116
Figure (7)	:	Frequency of underweight in SIBO -	
		negative cases	123
Figure (8)	:	Frequency of under weight in SIBO -	
		positive cases	124

INTRODUCTION & AIM OF THE WORK

INTRODUCTION

The intestinal bacterial flora co-exists in symbiosis with their host, but there are, however, certain conditions where the intestinal flora have been shown to cause clinical disorders either by the direct effect of their bacterial metabolite, or by interfering with the normal physiological processes, leading to malabsorption and to nutritional deficiencies (*Tabaqchali*, 1984).

These disorders occur when there is disruption of normal processes which prevent small intestinal bacterial overgrowth (SIBO) such as intestinal motility, mucosal antibacterial defenses and gastric acidity (Savage, 1977). When the numbers and types of bacteria usually found only distally multiply in the more proximal intestine; malabsorption, diarrhea and malnutrition; the major manifestations of SIBO; are produced (Orenstein and whitington, 1984).

Protein energy malnutrition (PEM) results in an increased risk of gastrointestinal infection. This can be attributed in part to impaired immune responses (Chandra and Wadhwa, 1989). The immune system is dependent on good nutritional status for its

optimal functioning. Immune function itself can provide a broad measure of nutritional deficiency (Chandra and Sarchielli 1993).

In PEM, there is a significant impairment of several aspects of immunity, including cell-mediated immune responses, secretory immunoglobulin A production, phagocyte function, complement system and cytokine production (*Chandra and Kumari*, 1994). Thus making malnourished children victims of the vicious circle of infection and malnutrition (*Bhaskarm*, 1992).

It was found that bacterial overgrowth of the small intestine is a common feature in immunodeficient patients regardless of the immunological abnormality (*Pignata et al.*, 1990). SIBO may be due to impaired local immunity (*Smith et al.*, 1990). It would be expected that persistent gut contamination can occur among cases who are malnourished after an attack of diarrhea (*Bagui et al.*, 1993).

Malnutrition may be a determining factor in bacterial overgrowth. In a study conducted on Nigerian children, malnourished children with or without diarrhea were found to have a wider microbial spectrum in their intestinal aspirates as compared to well nourished children. Total bacterial counts were ranging between 10^3 and 10^9 organisms ml, non of the aspirates were sterile. This confirms bacterial overgrowth as a feature of

malnourished children with or without diarrhea (Omioke, and Abiodun, 1989).

On the other hand, growth and nutrition have been documented to be adversely affected by gastrointestinal pathogens (Solomons, 1993). Bacterial overgrowth in the upper small intestine is postulated to cause persistent diarrhea (Bhatnagar et al., 1992). Although few episodes of diarrhea last longer than 14 days (persistent diarrhea), these episodes are particularly associated with growth faltering and malnutrition (Penny et al., 1990).

AIM OF THE WORK:

The aim of this study was to evaluate the prevalence of small intestinal bacterial overgrowth among Egyptian children and to assess its impact on their nutritional status.

