SELECTION INDICES TO IMPROVE PRODUCTIVE TRAITS IN LOCAL SHEEP

BY

EHAB MOUSTAFA MOHAMED SHAAT

A thesis submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

in

Agriculture (Animal Breeding) 52193

Department of Animal Production Faculty of Agriculture Ain Shams University

1995

APPROVAL SHEET

SELECTION INDICES TO IMPROVE PRODUCTIVE TRAITS IN LOCAL SHEEP

BY

EHAB MOSTAFA MOHAMED SHAAT

B.Sc. Agric. Sci. (Animal Production) Cairo University, Fayoum Branch, 1989

This thesis for M.Sc. degree has been approved by:

Prof. Dr. E. A. Afifi ... E. A. Affi

Prof. of Animal breeding Faculty of Agriculture, at Moshtohor, Zagazig University.

Prof. of Animal breeding Faculty of Agriculture, Ain Shams University.

Prof. Dr. E. A. El -Tawil ... X... H. ... X. ...

Prof. of Animal breeding Faculty of Agriculture, Ain Shams University.

Date of examination: 22 / 11 / 1995

ACKNOWLEDGMENT

All praises are to Allah, who gave me sincere love of my professors and colleagues, patience and every thing to finish this work.

Sincere thanks are due to my mother, my father and my sisters, for their love, patience and confidence throughout. This work is dedicated to them.

I like to express my sincere appreciation to Dr. Esam El-Tawil, professor of animal breeding, faculty of Agriculture, Ain Shams University, the chairman of the advisor committee, for his advises, encouragement, revision of the manuscript and supervising this work.

Sincere gratitude and appreciation are to Dr. Helmy Metawi, Researcher in Sheep and Goats Research Division, Animal Production Research Institute, Ministry of Agriculture, for the stimulating environment he has provided me with, his suggestion, guidance, revision the manuscript and supervising this work.

I am greatly indebted and grateful to Dr. Hussein Mansour, professor of animal breeding, faculty of Agriculture, Ain Shams University, for his continuous help in statistical analysis, reading the manuscript, guiding and encouragement, I appreciate his efforts to extend and broaden my understanding of life sciences and his extraordinary contribution of time.

My deepest gratitude are deserved to Dr. Salah Galai, professor of animal breeding, faculty of Agriculture, Ain Shams University, for suggesting study and for his continuous encouragement, guidance and reading the manuscript.

Appreciation is extended to Dr. L. D. Van Vleck and Dr. K. G. Boldman, Agriculture Research Service, USDA R. L. Hruska US Meat Animal Research Center, University of Nebraska,

Lincoln, USA . for the effort they spent in deviling the software of Animal Model. The author gratfully thank to them and thier co-workers for providing us the MTDFREML program.

I wish to express my sincere appreciation to my close friend Mr. Hazem Almahdy, Assistant Research, in Sheep and Goats Research Division, Animal Production Research Institute, Ministry of Agriculture, for his great help and assistance. I am highly indebted to him for invaluable support to finish this work.

A special word of thankfulness is due to Ms. Hoda M. Abd El-Raoof, Assistant Research, in Buffalo Breeding Research Department, Animal Production Research Institute, Ministry of Agriculture, for her continuous encouragement and extended helping hands whenever I needed them.

Thank is accorded to all the staff of Sheep and Goats Research Division, Animal Production Research Institute, Ministry of Agriculture, for their direct and indirect assistance and cooperation.

Selection Indices to Improve Productive Traits in Local Sheep

BY

Ehab Moustafa Mohamed Shaat

B.Sc. Agric. Sci. (Animal Production)

Cairo University, 1989

Faculty of Agriculture (Fayoum Branch)

Under the supervision of **Prof. Dr. E. A. El-Tawil**Prof. of Animal Breeding

Dr. H. R. Metawi

Researcher in Sheep and Goat Research Division

Animal Prodtion Research Institute

ABSTRACT

Ehab Moustafa Mohamed Shaat. Selection Indices to Improve Productive Traits in local Sheep. Unpublished master of science, University of Ain Shams, Faculty of Agriculture, Department of Animal Production, 1995.

Estimating the heritabilities of weights at 120, 180 days of age and number of lambs born per ewe joined were the first goal of this study. Evaluation of genetic and phenotypic correlations between these traits formed the second goal. While, the third goal was constructing different selection indices including different combinations between these traits for Ossimi and Rahmani sheep.

The studied traits were analyzed twice. The first analysis utilized a fixed model to estimate the effect of location, age of dam, season, sex, year and type of birth. While in the second analyses an animal model with REML procedure were used to estimate the variance components of studied traits. In general, all main effects had significant effect on lamb body weights in both Ossimi and Rahmani sheep. Also fixed effects influnces significantly the number of lambs born per ewe joined with exception of season of lambing in Ossimi sheep. That had insignificant effect (P<.001). In Rahmani sheep season of lambing was significant but the other fixed effects were not significant. Heritability estimates were 0.26, 0.24 and 0.03 in Ossimi and 0.13, 0.26 and 0.09 for Rahmani for weights at 120 and 180 days of age and number of lambs born per ewe joined traits, respectively.

Genetic and phenotypic correlations were high between body weight traits while they were very low and negative between number of lambs born per ewe joined and each of weight at 120 and 180 days of age in both breeds.

Several selection indices were examined in both Ossimi and Rahmani. The highest expected genetic improvement for the all traits was obtained when the following indices were used, with a correlation between the index and the aggregate genotypic value $(r_{\rm H})$,

For Ossimi

$$\begin{split} I_{_1} &= -0.0896 \text{ W}120 + 0.5145 \text{ W}180 + 0.4133 \text{ Lb}_{_J}, \text{ with } (r_{_{IH}}) \equiv 0.44. \\ I_2 &= 0.1563 \text{ W}120 + 0.3540 \text{ LB}_{_J}, \text{ with } (r_{_{IH}}) \equiv 0.23. \end{split}$$

$$I_3 = 0.2453 \text{ W}180 + 0.4707 \text{ LB}_j$$
, with $(r_{IH}) = 0.33$.

For Rahmani

$$I_1 = 0.1018 \text{ W}120 + 0.3693 \text{ W}180 + 1.3984 \text{ LB}_i$$
, with $(r_{iH}) = 0.37$.

$$I_2 = 0.1848 \text{ W}120 + 1.3461 \text{ LB}_j$$
, with $(r_{iH}) = 0.31$.

$$I_3 = 0.2835 \text{ W}180 + 1.3670 \text{ LB}_j$$
, with $(r_{IH}) = 0.34$.

The relative efficiency (RE) in genetic gain was also used to compare the constructed indices. The (RE) was 92% and 83% as compared with gain expected from the first index for I_2 and I_3 , respectively, in Rahmani sheep, while it was 75%, 53% in Ossimi for I_2 and I_3 , respectively.

Key words: Sheep, Lambs Body Weights, Prolificay and Selection Index.

Table of Contents

	Page	3
1.	Inroduction1	
2.	Review of Literature	
	2.1. Factors Affecting Growth and Reproductive Traits 2	
	2.1.1. Factors Affecting Growth Traits	
	2.1.1.1. Location 2	
	2.1.1.2. Age of Dam	
	2.1.1.3. Season of Birth	
	2.1.1.4. Year of birth 4	
	2.1.1.5. Sex 4	
	2.1.1.6. Type of Birth 5	
	2.1.2. Factors Affecting Reproductive Traits	
	2.1.2.1. Location 6	
	2.1.2.2. Season of Lambing6	
	2.1.2.3.Year of lambing7	
	2.2. Genetic Parameters 8	
	2.2.1. Heritability8	
	2.2.2. Genetic and Phenotypic Correlations21	
	2.2.2.1. Genetic Correlation	
	2.2.2.2. Phenotypic Correlation	
	2.3. Selection Index	
	2.3.1. Relative Economic Value	
	2.3.2. Efficiency of Selection Index	
3.	Materials and Methods	
	3.1. Management	
	3.2. Lambs Performance Traits	
	3.3. Reproductive Trait	
	3.4. Statistical Analysis	

	Page
	3.4.1. Estimation of Factors Affecting Lamb Growth Traits and
	Productive Trait40
	3.4.2. Estimation of genetic and phenotypic parameters 41
	3.5. Estimation of Relative Economic Values
	3.6. Construction of Selection Index
4.	Results and Discussion
	4.1. Factors Affecting Growth and Reproductive Traits
	4.1.1. Factors Affecting Growth Traits47
	4.1.1.1. Location
	4.1.1.2. Age of Dam
	4.1.1.3. Season of Birth
	4.1.1.4. Block of Years49
	4.1.1.5. Sex
	4.1.1.6. Type of Birth 50
	4.1.2. Factors Affecting Reproductive Taits
	4.1.2.1. Location 59
	4.1.2.2. Season of Lambing 60
	4.1.2.3. Block of Years 60
	4.2. Genetic Parameters
	4.2.1. Heritability
	4.2.2. Genetic Correlation
	4.2.3. Phenotypic Correlation
	2.3. Selection Index
5.	Summary and Conclusions
6.	References
-	A settle 6 second

List of Tables

Page
Table 1. Heritability (h²) estimates of 120-day weight (W120) and their
standard errors (SE), when available, by different method in
some breeds reported in the literature
Table 2. Heritability (h²) estimates of 180-day weight (W120) and their
standard errors (SE), when available, by different methods in
some breeds reported in the literature14
Table 3. Heritability (h²) estimates of number of lamb born per ewe
joined (LBკ) and their standard errors (SE), when available, by
different methods in some breeds reported in the literature16
Table 4. Range of the heritability for 120-day weight obtained by differen
method20
Table 5. Range of the heritability for 180-day weight obtained by different
method
Table 6. Range of the heritability for LB _j obtained by different
method
Table 7. Estimates of genetic correlations ($r_{_{\rm G}}$) of 120-day, 180-day and
other body weights in different breeds
Table 8. Estimates of genetic correlations (r _G) between number of
lambsborn (LB) and body weights in different breeds
Table 9. Estimates of phenotypic correlations (rp) of 120-day, 180-day
and other body weights in different breeds
Table 10. Estimates of phenotypic correlations (r _p) between number of
lambs born (LB) and body weights in different breeds29
Table 11. Distribution of the lambs and sires in the two breeds 37
Table 12. Least squares means (LSM) and standard errors (SE), for birth
weight (BW) and weaning weight (WW), kg, in Ossimi sheep 51

Page
Table 13. Analysis of variance of some factors affecting birth weight
(BW) and weaning weight (WW) in Ossimi sheep, kg ² 52
Table 14. Least squares means (LSM) and standard errors (SE), for 120-
day (W120) and 180-day (W180) weight, kg in Ossimi
sheep
Table 15. Analysis of variance of some factors affecting 120-day
(W120) and 180-day (W180) weights in Ossimi sheep, kg ² 54
Table 16. Least squares means (LSM) and standard errors (SE), for birth
weight (BW) and weaning weight (WW), kg, in Rahmani
sheep 55
Table 17. Analysis of variance of some factors affecting birth weight
(BW) and weaning weight (WW) in Rahmani sheep , kg² 56
Table 18. Least squares means (LSM) and standard errors (SE) for 120-
day (W120) and 180-day (W180) weight, kg in Rahmani
sheep 57
Table 19. Analysis of variance of some factors affecting 120-day
(W120) and 180-day (W180) weights in Rahmani sheep, kg^2 58
Table 20. Least squares means (LSM) and standard errors (SE), for
number of lambs born per ewe joined (LB $_{\rm j}$), in ssimi sheep 61
Table 21. Analysis of variance of some factors affecting number of
lambs born per ewe joined (LB _j) in Ossimi sheep 62
Table 22. Least squares means (LSM) and standard errors (SE), for
number of lambs born per ewe joined (LB _j), in Rahmani
sheep
Table 23. Analysis of variance of some factors affecting number of
lambs born per ewe joined (LB _j) in Rahmani sheep 64
Table 24. Estimates of additive genetic variance (σ^2 _a) and residual
variance (σ^{2e}) for 120-day (W120),180-day (W180) weights
and number of lambs born per ewe joined (LB _i) in Ossimi and
Rahmani 70