MANAGEMENT OF MALIGNANT OVARIAN GERM CELL TUMORS

Essay

submitted in partial fulfilment of M.S.

Degree in Radiotherapy and Nuclear Medicine

By

Amr Lotfy Farag Mohamed

(M.B.B.Ch.)

615-842

Supervisors

A Dr. Soheir Helmy Mahmoud

Ass. Professor of Radiation Oncology and Nuclear Medicine-Ain Shams University

Dr. Atef Yossef Riad

Ass. Professor of Radiation Oncology and Nuclear Medicine-Ain Shams University

Dr. Soheir Sayed Ismael

Ass. Professor of Radiation Oncology and Nuclear Medicine-Ain Shams University

Ain Shams University
1995

TO THE MEMORY OF MY GRAND-MOTHER

TO THE MEMORY OF MY GRAND-FATHER

ΤΟ ΤΗΕ ΜΕΜΟΡΨ ΟΦ ΜΨ ΓΡΑΝΔ-ΜΟΤΗΕΡ

ΤΟ ΤΗΕ ΜΕΜΟΡΨ ΟΦ ΜΨ ΓΡΑΝΔ-ΦΑΤΗΕΡ

ACKNOWLEDGEMENT

I'm greately indebted to my *Prof. Dr. Laila Faris* head of Radiation Oncology, Nuclear Medicine Department, Faculty of Medicine. Ain Shams University, where this work was completed, for her encourgement, support and mother care.

My deepest thanks, gratitude, great respect and sincer appreciation goes to my *Prof. Dr. Sohir Helmy Mahmoud*, Ass. Prof. of Radiation Oncology, Nuclear Medicine, Ain Shams University for her, constructive guidance and utmost help which were the paramount axes in initiation and completion of this work.

I wish to express my extrem gratitude to my **Prof. Dr. Atef Yousef Riad,** Ass. Prof. of Radiation Oncology, Nuclear Medicine, Ain Shams University for his fruitfull suggestions and kind help.

I wish to express my extrem gratitude to my *Prof. Dr. Sohir* Said Ismael Ass. Prof. of Radiation Oncology, Nuclear Medicine, Ain Shams University for her helpful advise and assistance.

My gratitudes and thanks are extended to all the staff members of the department of Radiation Oncology, Nuclear Medicine, Ain Shams University for there help and co-operation.

INDEX

	Page
List of abbreviations	i
List of figures.	iii
List of Tables.	v
	I
Introduction.	II
Aim of the subject.	_
Anatomy of the ovary	اد
Histology of the ovary	5
Incidence and Epidemiology of MOGCT	10
Pathology of MOGCT	16
Clinical Picture and Diagnostic work up	45
Surgery staging and treatment	75
Chemotherapy of MOGCT	88
Radiation Treatment of MOGCT	13 4
Prognosis	156
References	176
Summary	211
Arabic Summary. الملخص العربي	

LIST OF ABBREVIATIONS

ACE Adriamycin, Cyclophosphamide, Etoposide.

AFP Alpha-feto protein.

ASUHS RT and NMD Ain Shams University Hospitals.

Radiotherapy and Nuclear Medicine Department.

BEP Bleomycin, Etoposide, Cisplatin.

BOMP. Bleomycine, oncovine, methotrexate, platinole.

CA 125 Cancer Antigen 125. CA 19.9 Cancer Antigen 19.9.

CEA Carcino embryonic Antigen.

CR Complet response.

CT Computed Tomography.

EMA-Co Etoposide, Methotrexate, Dactinomycin. D.

FNAB Fine needle aspiration biopsy.

GCT Germ cell tumors.
Gd DTPA Gadolinum DTPA.

hCG Human chorionic gonadotropine.

KD Kilodalton.

LAG. Lymphangiography.

LCA Lense cullinaris haemagglutinin.

LDH Lactic dehydrogenase.

MOGCT Malignant ovarian germ cell tumors.

MRI Magnetic Resonance Imaging.

NCI National Cancer Institute.

NSE Neuron specific enolase.

NUSM Nagoya University School of Medicine.

OMP Vinblastin, Methotrexate, Platinole. PAV Platinole, Adriamycin, Vinblastin.

PR Partial response.

TAS Trans abdominal sonography.
TPA Tissue polypeptide Antigen.
TVS Trans vaginal sonography.

UTMDACCUniversity of Texas M D. Anderson Cancer Center.

VAC Vincristine-Actinomycine D-Cyclophosphamide.

VBP Vinblastine, Bleomycin, Cisplatin. VIP Vinblastine, Ifosfamide, Cisplatin.

List of Figures

	1	rage
Fig. "1"	The anatomy of the ovary	2
Fig. "2"	Lymphatic drainage of the ovaries	4
Fig."3"	Histologic classification of ovarian tumors	6
Fig."4"	Classification of MOGT according to differentiation	12
Fig. "5"	Cross section of dysgerminoma	18
Fig. "6"	Microscopic picture of dysgerminoma	
Fig. "7"	Microscopic picture of dysgerminoma	21
Fig. "8"	Gross picture of endodermal sinus tumor	23
Fig. "9"	Microscopic picture of endodermal sinus tumor	24
Fig. "10"	Schillar duval bodies of endodermal sinus turnor	25
Fig. "11"	Immunohistochemical analysis of endodermal	
118,	sinus tumor	25
Fig. "12"	Gross picture of cystic teratoma	28
Fig. "13"	Gross picture of struma ovarii	33
Fig. "14"	Microscopic picture of struma ovarii	33
Fig. "15"	Microscopic picture of carcinoid tumor	34
Fig. "16"	Microscopic picture of embryonal carcinoma	38
Fig. "17"	Microscopic picture of embryonal carcinoma	38
Fig. "18"	Microscopic picture of choriocarcinoma	41
Fig. "19"	Immuno peroxidase technique in staging of	
119. 17	choriocarcinoma	41
Fig. "20"	Evaluation of pelvic mass in young female	48
Fig. "21"	CT picture of calcifications in malignant teratoma	55
Fig. "22"	CT picture of calcifications in liver secondaries of	
116	malignant teratoma	55
Fig. "23"	CT scan to show Ascitis and metastasis in omentum.	57
Fig. "24"	CT scan to show larg tumor implant in diaphragm	
115. 4.	"secondaries from ovarian neoplasms"	57
Fig. "25"	MDI of a larg mass in the nelvis	58
Fig. "26"	CXR for pleural effusion as a complication of malignan	ţ
115. 20	ovarian germ cell tumor	61
Fig. "27"	Radiogrph during urogram with teeth in a mass located	
115. 27	in the pelvis	62
Fig. "28"	Lymphangiography of patient with dysgerminoma	64
Fig. 28	FIGO staging for primary ovarian carcinoma	
Fig. "30"	Tumor seedling in the diaphragm	85
Fig. "31"	The theoritical outcome of 100 patients of stage Ia	
iig. Ji	and unilateral Ic dysgerminoma	107
		

		Page
Fig. "32"	The theoritical outcome of 100 patients of stage Ib to Iv and reccurent dysgerminoma.	111
Fig. "33"	Field arrangement for tretment of various stage of	135
Fig. "34"	dysgerminoma Ipsilateral and hemipelvic field for irradiation of	155
Fig. "35"	dysgerminoma. Pelvic boost in abdominopelvic irradiation therapy	
11g. 55	in ovarian tumors	142 143
Fig. "36"	The mega voltage moving-strip technique	
Fig. "37"	Open field Abdomino pelvic technique	146
Fig. "38"	Martenz Technique	148

List of tables

		page
Table"1"	Relative frequencies of different types of MOGO	CT
		10
Table"2"	Relative frequencies of MoGcT at ASUHS. RT a	nd
rable 2	NMD	
Table"3"	The WHO classification of OGCT	17
Table 3	FIGO stage grouping of primary ovarian neoplasm	77
Table 4 Table 5"	VAC regimen	91
Table 5	Sustained remission rate with VAC chemotherapy	
Table 0	in patients with stage I germ cell tumors	91
Table "7"	Sustained remission rate with VAC chemotherapy	
Table /	in patients with Stage II-IV germ cell tumors	92
Table"8"	VBP Regimen	94
Table 8 Table 9"	Sustained remission rate with VBP chemotherapy	
Table 7	in patients with stage I germ cell tumors	96
Table"10"	Sustained remission rate with VBP chemotherapy	
Table 10	in patients with stage II-IV germ cell tumors	96
Table"11"	Studies of the chemotherapy of advanced germ	
Table 11	cell tumors	97
Table"12"	PEP or PE regimen	100
Table 12	Anti emetic regimen	101
Table 13	Criteria for conservative management of pure	
Table 1	dysgerminoma	105
Table"15"	VIP regimen	
Table 15	POMP-ACE regimen	116
Table 17	EMA-CO regimen	118
Table"18"	Summary of late Bowel complications of the	
14010 10	abdomino-pelvic irradiation	153
Table"19"	Five year survival of MOGCT according to stage	157
Table"20"	Comparison of grade and stage with survival in	
14014	immature teratoma	160
Table"21"	Survival by grade of stage I immature teratoma	161
Table"22"	Relation of DNA ploidy to stage of MOGCT	170
Table"23"	Relation of DNA ploidy to size of MOCGT	171
Table "24"	The outcome of DNA ploidy	172

INTRODUCTION

INTRODUCTION

Ovarian germ cell tumors (OGCT) are a heterogenous and complex group of disease. Study of these fascinating neoplasms is hampered by their complexity and rarity. However, these neoplasms have importance beyond their numerical incidence, because they typically occur in young women and improvement of treatment will enable a substational majority of these patients not only to survive their disease but, also to preserve their fertility.

Among ovarian neoplasms many germ cell tumors possess the unique property of producing biologic markers which can be detected in the serum. The development of specific and sensitive radioimmuno assay techniques for measuring hCG and AFP has led to dramatic improvements in monitoring of patients with these tumors, thus, helping the diagnosis of these tumors and more importantly, may be used in monitoring the response to treatment as well as in detecting subclinical disease recurrence.

AIM OF THE *SUBJECT*

AIM OF THE SUBJECT

This essay's aim is to review the most recent publications in the subject of management of ovarian malignant germ cell tumors (OMGCT), and to evaluate the impact of the recent advances in early diagnosis and management on both survival and fertility in young patients who got OMGCT.

*ANATOMY & * *HISTOLOGY*