

MAGNETIC RESONANCE IMAGING IN **INTRACEREBRAL HEMATOMAS**

THESIS

Submitted For The Partial Fulfillment Of The Master Degree In Radiodiagnosis Faculty Of Medicine Ain Shams University

Bv

HALA ABD EL MOHSEN SOLIMAN

(M.B.B.Ch)

52959

SUPERVISOR

Prof. Dr. KHALED TALAAT KHAIRY

Assistant Professor of Radiodiagnosis Faculty Of Medicine - Ain Shams University

1996

CONTENTS

Acknowledgments7	
Introduction and aim of the work11	
Physical principles of magnetic resonance imaging15	
- Preparatory Alignment16	
- RF Excitation20	
- Relaxation and signal measurement21	
- Pulse Sequences and Image Contrast25	
- Rapid partial saturation30	
- Echo Planar Methods31	
- Spatial Localization32	
- Simultaneous Slice Acquisition34	
- Volume Acquisition35	
- Slice selection35	
- General principles of instrumentation37	
- Contrast agents41	
- Image artefacts43	
Anatomical aspects of MRI of the brain49	
- Anatomical aspects of the brain stem50	
- Anatomical aspects of the cranio-cervical junction52	
- Anatomical aspects of the white matter53	
- Anatomical aspects of the pituitary gland55	
Pathology of intracerebral hematomas75	
- Spontaneous intracerebral hematomas	
- Primary intracerebral hematomas	
- Spontaneous supratentorial hemorrhage85	
- Spontaneous infratentorial hemorrhage92	
- Secondary intracerebral hematomas100	0
- Traumatic intracerebral hematomas	
MRI manifestations of intracerebral hematomas11	1
- Biochemical basis of the MR appearance of crebral hemorrhage11	I
- Clinical aspects of MR imaging of hemorrhage12	1
Summary and Conclusion14	5
References15	3
Arabic Summary163	2

INDEX OF FIGURES

Figure 2-1	A spinning nucleus having charge has a magnetic field	17
Figure 2-2	around it in the form of a magnetic dipole moment. If tissue is placed within a strong magnetic field each	17
rigure 2-2	If tissue is placed within a strong magnetic field each	17
	individual nucleus aligns itself either parallel (A) or	
Vigure 2.3	antiparallel (B).	20
Figure 2-3	If the residual parallel aligned moments are decomposed	20
	into components along the transverse plane versus	
	components in the longitudinal plane, it is found that all	
	components subtract in the transverse plane while all the	
F: 4	components add up in the longitudinal plane.	٠.
Figure 2-4	Illustration of 90° and 180° tipping of the bulk	21
	magnetization vector	
Figure 2-5	Different views of the RF excitation process.	22
Figure 2-6	Longitudenal section through an MR magnet with the	39
	patient positioned in the body coil for scanning.	
Figure 2-7	Three sets of gradient coils which after the main magnetic	40
	field shown in the three orthogonal planes	
Figure 3-1	A-L Brain, Axial MR images.	56
Figure 3-2	A-D Brain. Sagittal MR images.	62-
Figure 3-3	Midsagittal MR image.	64
Figure 3-4	Brain. Coronal MR images.	66
Figure 3-5	Pituitary fossa (sella tursica). Coronal MR images	70
Figure 4-1	Acute right putaminal hemorrhage in a patient with history	86
	of hypertension.	
Figure 4-2	Acute hemorrhage in the head of the caudate nucleus, ant.	88
	limb of the internal capsule.	
Figure 4-3	Thalamic hemorrhage from an occult vascular	89
	malformation	
Figure 4-4	Left parietal lobar hemorrhage	90
Figure 4-5	Hemorrhage into chromophobe pituitary adenoma.	92
Figure 4-6	Cerebellar hemarrhage in the subacute stage	94
Figure 4-7	Pontine hemorrhage.	97
Figure 4-8	Midbrain hemorrhage of unknown etiology.	99
Figure 4-9	Subacute hematoma in the right superior frontal gyrus and a	101
	second one in the left frontal operculum.	
Figure 4-10	70 year old male with lung carcinoma with hemorrhage into	102
	a temporal lobe metastasis.	
Figure 4-11	Right parietooccipital subcortical hemorrhage due to	104
	anticoagulats	
Figure 4-12	Right occipital hemorrhagic infarction.	105
Figure 4-13	Occult vascular malformation in a 22 year old woman.	106
Figure 5-1	Proton relaxation in water	112

Figure 5-2	A paramagnetic ion has been added to the aqueous solution. The large magnetic moment associated with the unpaired outer shell electrons of the paramagnetic ion results in enhanced T1 relaxation with respect to pure water	113
Figure 5-3	A macromolecule-metal complex has been added to the aqueous solution. This further slows the tumbling motion of the water molecule.	115
Figure 5-4	Illustration of the effects of intracellular compounds differing magnetic susceptibility on the magnetic field surrounding the cell.	116
Figure 5-5	Magnetic susceptibility of hemoglobin breakdown products	122
Figure 5-6	When water molecules diffuse through normal brain matter, they experience a homogenous magnetic field.	124
Figure 5-7	Graph showing evolution of signal intensity of cerebral hematoma on MRI.	126
Figure 5-8	Temporal changes of hemorrhage on MR images.	128
Figure 5-9	Illustration of signal loss due to intravoxel and intervoxel variations in magnetic susceptibility.	134
Figure 5-10	Axial FLASH MR image at 1.5 T.	135
Figure 5-11	Parasagittal T ₁ -weighted spin-echo MR image demonstrating a subarachnoid blood clot	136
Figure 5-12	Densley calcified fossa meningioma.	140
Figure 5-13	The axial T ₁ -weighted image demonstrates bright signal surrounding an area of signal loss bilaterally in the basal ganglia	141

INDEX OF TABLES

Table 2-1	Nuclei of interest in biological MRI	16
Table 4-1	Causes of intracerebral hemorrhage	76
Table 4-2	Distribution by site	77
Table 5-1	Summary of physical and magnetic properties of	12
	hemoglobin breakdown products	
Table 5-2	Time course of hemorrhage signal intensity	12

Central Library - Ain Shams University

ACKNOWLEDGMENTS

ACKNOWLEDGMENTS

I would like to express my gratitude to Professor KHALED TALAAT KHAIRY for his helpful comments, suggestions and unlimited support. He has given individual assistance in numerous points of detail and continued to guide this work.

Last but not the least, my sincere thanks and gratitude are due to all members of my FAMILY who endured me during carrying out this work.

INTRODUCTION AND AIM OF THE WORK

