ROLE OF MAGNETIC RESONANCE ANGIORGRAPHY (MRA) IN THE DIAGNOSIS OF THE VASCULAR LESIONS OF THE ABDOMINAL AORTA AND ITS MAIN BRANCHES

ESSAY

Submitted for Partial Fulfillment of the Master Degree In Radiodiagnosis

Ву

Ahmed Nabil Abd-El-Halim

 $\mathcal{M}.\mathcal{B}.,~\mathcal{B}.\mathit{Ch}.$

Supervised By

Prof. Dr. Hoda Ahmed El-Deeb

Professor of Radiodiagnosis Faculty of Medicine Ain Shams University

Dr. Ola Gamal Nouh

Lecturer of Radiodiagnosis
Faculty of Medicine
Ain Shams University

FACULTY OF MEDICINE AIN SHAMS UNIVERSITY 1996

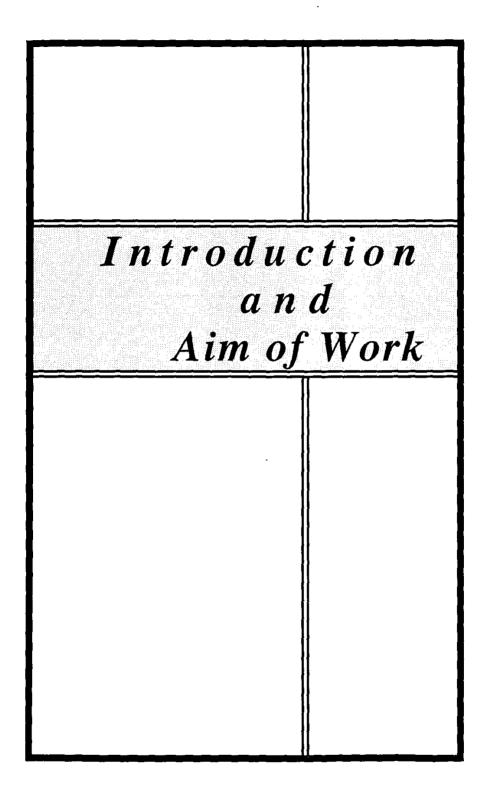
Acknowledgment

First and foremost, THANKS GOD. to whom I relate any success in achieving any work in my life.

I wish to express my deepest gratitude and appreciation to Prof. Dr. Hoda Ahmed El-Deeb, Professor of Radiodiagnosis, Faculty of Medicine, Ain Shams University, it is a real pleasure to acknowledge her sincere encouragement. Her intellectual and constructive opinions were essential to dress this work its final form.

I would also like to express my sincere thanks and deepest graitutude to Dr. Ola Gamal Nouh, Lecutrer of Radiodiagnosis, Faculty of Medicine, Ain Shams University, for her honest help, constant advice, keen interest and guidance throughout the performance of this work.

I would also like to express my deepest thanks to all members of the staff of the MRI unit of the Specialized Hospital of Ain Shams University.


INDEX

	Contents	Page
*	Introduction and Aim of Work	1
*	Anatomy of the abdominal aorta and its main branches	2
*	Pathology	12
*	Technical aspects of MRA	23
*	Normal MRA appearances of the abdominal aorta and its main branches	46
*	MR manifestations with illustrative cases	53
*	Summary and Conclusion	92
*	References	93
*	Arabic summary	

Figures (continued)		
18	Normal renal angiogram. Axial 2D TOF image	48
19	Axial 3D PCA of the renal arteries	48
20	A,B) Axial 2D TOF MRA illustrates iliac arteries and veins	49
21	A,B,C,D) Coronal 2D TOF MRA from anterior to posterior in the abdomen	50
22	Oblique coronal 3D TOF demonstrates the mesentric vessels and renal artery origins	51
23	A) 2D TOF MRA of the iliac arteries.	51
	B) An inversion pulse to null fat signal is used.	
24	A,B) Oblique sagittal ECG-gated segmented tubro flash images demonstrate the celiac trunk and superior mesentric artery.	52
25	Illustrates abdominal aortic aneurysm:	54
	A) Axial T1 SE, B) Sagittal 2D TOF MRA image, C) Sagittal segmented turbo flash	
26	Gadolinium enhanced 3D MRA of an aortic aneurysm	55
27	2D TOF image shows the relationship of the aneurysm to renal artery	56
28	Coronal 2D TOF MRA of an aortic aneurysm	56
29	A coronal MIP from a series of coronal 2D TOF images of an aortic aneurysm	57
30	Coronal projectional MRA of an aortic aneurysm	57
31	Sagittal 2D TOF image of a mycotic aneurysm	58
32	Aortic stenosis: A) Axial 2D TOF image, B) Coronal 2D TOF image.	62
33	Axial 2D TOF image demonstrates hepatic artery occlusion	62
34	Stenosed iliac arteries: A) 2D TOF angiogram, B) 3D TOF angiogram	63
35	Stenosed iliac arteries: A) 2D TOF acquisition, B) Gadolinium enhanced 3D acquisition	64
36	A) Bilateral iliac stenosis on MIP angiogram, B) MIP angiogram after PTA	65

	Figures (continued)	
37	Type B aortic dissection: A) Gated transverse image, B) Sequential transverse images from cranial to caudal.	68
38	Aortic dissection: A,B: First and second-echo (gated) images	69
39	Type B aortic dissection: A) Coronal 2D TOF image, B) Axial 2D TOF image	70
40	Aortic dissection: A) T1 SE image, B) Following gadolinium adminstration	71
41	A,B) Aortic dissection involving visceral arteries	72
42	Illustrates Takaysu's aortitis	74
43	A,B) Differentiation of types of peri aortic pathology	76
44	T2 weighted image illustrating aortic grafts	78
45	T2 weighted image showing both limbs of a graft in the pelvic region	78
46	Pseudo aneurysm of abdominal aortic graft	79
47	Collapsed gradient echo axial image of renal arteries	81
48	Axial 3D TOF aquisition showing normal double renal arteries	82
49	Gadolinium enhanced 3D TOF axial MRA of renal arteries	82
50	A) Coronal MIP PCA image of renal arteries, B) Axial MIP PCA image of renal arteries	83
51	3D TOF image showing subtle stenosis of the right renal artery	84
52	A,B) Axial and coronal preangioplasty MIP PC images	85
53	Axial 3D TOF image of a case of FMH	87
54	Arteriovenous fistula of right kidney: A) coronal 2D TOF image, B) Axial 2D TOF image	88
55	A) sagittal reformation of axial 3D TOF of celiac and superior mesentric artery origins, B) Axial 3D PCA image of celiac and superior mesentric arteries	90

INTRODUCTION AND AIM OF WORK

Contrast angiography used to be the only method for evaluating vascular system for decades.

Recently, new non invasive modalities as ultrasound duplex imaging have joined contrast angiography in their task, however they could not totally replace it due to its high spatial resolution and high accuracy in reflecting any vascular lesion.

The flow of blood through magnetic field gradients and radiofrequency fields produce signal changes that can be used to distinguish blood vessels from stationary surrounding tissues.

Accordingly the field of MR angiogrpahy attempts to create images that depict blood vessels in a projective format similar to conventional invasive angiogram but without the need for ionizing radiation.

The aim of the work is to emphasize the role of MRA as a new noninvasive modality for imaging of the abdominal aorta and its branches.

