

# Archaeo-Geophysical Prospecting In Luxor Area, Upper Egypt.

A Thesis

Submitted to the Geophysical Department,

Faculty of Science,

Ain Shams University

for Doctor Philosophy اللومان الجليب يُرْسَكِرُونِلِما أَمَّ المَّارِينِ الدُونِيُّ الْكِكُرُونِيلِمَّا

60904

h

El-Sayed Abdelazim Mohamed Issawy

(M. Sc. Geophysics)

Supervised by

Prof. Dr. A. M. Sabry

Professor Of Geophysics, Geophysics Dept., Faculty of Science, Ain Shams University. Prof. Dr. A. A. Tealeb

professor of Geophysics, National Research Institute of Astronomy and Geophysics, Helwan.

Dr. G. S. Hassan

Lecturer of Geophysics, National Research Institute of Astronomy and Geophysics, Helwan.

CAIRO, 1997





#### ACKNOWLEDGMENTS

In the first place, praise be to GOD and gratitude is due to almighty GOD who ided and guided me to bring forth this thesis to light. Thanks GOD.

My heartful gratitude to Prof. Dr. N. M. Abu-Ashour, Professor of Geophysics and Head of Geophysics Department, Faculty of Science, Ain Shams University, for his offering the facilities for this work.

I have great pleasure in expressing my deep gratitude to Prof. Dr. A. M. Sabry, Professor of Geophysics, Geophysics Department, Faculty of Science, Ain Shams University, for his joint supervision, and his continuous and effective moral assistance which encourage me to accomplish this work.

I would like to express my great indebtedness and deep gratefulness to Prof. Dr. A. A. Tealeb, Professor of Geophysics, National Research Institute of Astronomy and Geophysics, Helwan, Cairo, for kind supervision, invaluable guidance and for doing his best in solving all the problems which I'd faced during the long run of research work.

I can not sufficiently expressed my deepest thanks and gratitude to **Dr. Jan Mrlina**, Gravimetry department, Geophysical Institute, Prague, Czech Republic, for valuable discussions, comments, kind cooperation and great helping during all steps of the study.

The gratitude also extended to Prof. Dr. M. Abdelrahman, Professor of Geophysics, Geophysics Department, Faculty of Science, Ain Shams University, for his kind discussions at the beginning of the study.

Special thanks for my colleague **Dr. A. H. Radwan** for great helping and encouragement during the long run of the study.

Many thanks for Dr. G. S. Hassan for helping in the field work.

The author express his thanks and gratitude to the staff members of the Recent crustal movements studies depart, as well as **Dr. K. Sakr** and **Dr. S. Mahmoud** and others as well as **Mr. A. Ragab**, for helping in preparing the thesis.

Finally, from all my heart, I feels indebted to my family for their great help and permanent care.



## LIST OF CONTINENTS

|                                                     | Page No. |
|-----------------------------------------------------|----------|
| LIST OF CONTINENTS                                  | . I      |
| LIST OF FIGURES                                     | VI       |
| LIST OF TABLES                                      | XIII     |
| ABSTRACT                                            |          |
| CHAPTER I                                           |          |
| INTRODUCTION                                        |          |
| 1.1 Physiography                                    | 1        |
| 1.2 Geology                                         | 4        |
| 1.3 Pervious Geophysical Activities In The Theban   |          |
| Necropolis                                          | 4        |
| 1.3.1 Scope On The Report Of The Southwest Research |          |
| Institute                                           | 8        |
| 1.3.1.1 Summary Of Earth Resistivity Survey         | 9        |
| 1.3.1.2 Summary Of Vhf Electromagnetic Tests        | 9        |
| 1.3.2 Scope On The Report Of The Weston Geophysical |          |
| Corporation And Archaeological Imaging, Inc         | 10       |
| 1.3.2.1 Magnetic (Total Field) Measurements         | 11       |
| 1.3.2.2 Ground Penetrating Radar (GPR)              | 13       |
| 1.3.2.3 Seismic Refraction Survey                   | 19       |
| 1.4 Microgravity In Cavity Detection                | 20       |

#### CHAPTER II GRAVITY DATA ACQUISITION AND PROCESSING 2.1 Instrumentation 23 2.1.1 The LaCoste And Romberg Gravity meters..... 23 2.1.2 Station Coordinates Instruments..... 27 2.2 Data Acquisition.... 28 2.2.1 Field Procedure 28 2.2.2 Geodetic Techniques For Determining The Stations Coordinates.... 33 2.3 Data Processing..... 35 2.3.1 Drift Corrections.... 35 2.3.2 Plate Height Corrections..... 36 2.3.3 Terrain Corrections..... 38 2.3.3.1 Hammer Topographic Corrections..... 40 2.3.3.2 Sloping Wedges Technique Of Terrain Corrections 41 2.3.4 Latitude Corrections..... 49 2.3.5 Precision Of The Measurements..... 51 2.4 Bouguer Anomaly Profiles..... 55 2.5 Comparison Between The Results From G And D L&R Gravimeters. 67 CHAPTER III THE GRAVITY EFFECT OF THE ENTRANCES OF THE KNOWN TOMBS

3.1 Introduction.....

3.1.1 The Infinitely-Long Horizontal Polygon.....

73

74

| 3.1.2 Finite-Length Horizontal Polygons                    | 74  |
|------------------------------------------------------------|-----|
| 3.1.3 Vertical Polygons                                    | 74  |
| 3.1.4 Spheres                                              | 75  |
| 3.2 Gravity Of Polygonal Prisms                            | 75  |
| 3.2.1 Derivations Of The Formulas For Gravity Calculations | 77  |
| 3.3 Gravity Effect Of The Entrances Of The Studied Tombs   | 80  |
| 3.3.1 Entrance Of The Tomb Of Ramses III                   | 81  |
| 3.3.2 Tomb Of Amenmesses                                   | 89  |
| 3.3.3 Tomb Of Ramses I                                     | 91  |
| 3.3.4 Tomb Of Seti I (1306-1290 B.C.) 19th Dynasty         | 92  |
| 3.3.5 The Engine Room (KV 18)                              | 96  |
| 3.3.6 The Tombs Of KV 21, KV 27 And KV 28                  | 103 |
| 3.4 Bouguer Anomaly Profiles After Entrances Corrections   | 105 |
| 3.4.1 Bouguer Anomaly Profile Of Line A                    | 106 |
| 3.4.2 Bouguer Anomaly Profile Of Line B                    | 108 |
| 3.4.3 Bouguer Anomaly Profile Of Line C                    | 110 |
| 3.4.4 Bouguer Anomaly Profile Of Line P                    | 112 |
| 3.4.5 Bouguer Anomaly Profile Of Line Q                    | 113 |
| 3.4.6 Bouguer Anomaly Profile Of Line L                    | 115 |
| CHAPTER IV                                                 |     |
| MODELING AND INTERPRETATION OF THE ANOMALIES               |     |
| FROM KNOWN TOMBS AND UNKNOWN ANOMALIES IN                  |     |
| THE VALLEY OF THE KINGS                                    |     |
| 4.1. Introduction                                          | 117 |
| 4.2 Modeling And Intermetation Of The Gravity Data         | 118 |

| 4.2.1 Finite-Length Horizontal Polygon                       | 120 |
|--------------------------------------------------------------|-----|
| 4.2.1.1 Introduction                                         | 120 |
| 4.2.1.2 Fundamental Integrals                                | 122 |
| 4.2.1.3 Gravity End Corrections                              | 125 |
| 4.2.1.4 Estimation Of The Strike Length Of A 21/2-D Body     | 128 |
| 4.2.2 Interpretation Of The Gravity Data Of The Known Tombs  | 129 |
| 4.2.2.1 Tomb Of Amenmesses                                   | 130 |
| 4.2.2.2 Tomb Of Ramses III                                   | 133 |
| 4.2.2.3 Tomb Of Ramses I                                     | 136 |
| 4.2.2.4 Seti I Tomb                                          | 141 |
| 4.2.2.5 The Engine Room                                      | 150 |
| 4.2.2.6 Tombs Of KV 21, KV 27 And KV 28                      | 154 |
| 4.2.2.7 Interpretation Of The Gravity Data And The Anomalies |     |
| Of The Known Tombs With Respect To Each Other.               | 157 |
| 4.2.3 Modeling And Interpretation Of The Gravity Data Along  |     |
| Lines Crossed An Unknown Features                            | 160 |
| 4.2.3.1 Modeling And Interpretation Of Gravity Profile       |     |
| Along Line K                                                 | 162 |
| 4.2.3.2 The Unknown Feature Of The Anomaly On The            |     |
| Gravity Profile A (A8)                                       | 169 |
| 4.2.3.3 The Unknown Anomal Features Along Line V             | 172 |
| 4.2.3.4 The Anomaly Of The New Discovering Of KV 5           | 173 |
| CHAPTER V                                                    |     |
| SUMMARY, CONCLUSIONS AND RECOMMENDATIONS                     |     |
| 5.1 Summary And Conclusions                                  | 176 |

| 5.2 Recommendations | 181 |
|---------------------|-----|
| REFERENCES          | 182 |
| ARARIC SUMMARY      |     |

## LIST OF FIGURES

|                                                                                                           | Page No. |
|-----------------------------------------------------------------------------------------------------------|----------|
| Fig. (1. 1) Location map of the Valley of the Kings area, western side, Luxor                             | 3        |
| Fig. (1. 2) Topographic map of the Valley of the Kings area                                               | 5        |
| Fig. (1. 3) Aerial view of the Valley of the Kings                                                        | 6        |
| Fig. (1. 4) Magnetic profiles in the Valley of the Kings, in the area of KV 48                            | 12       |
| Fig. (1. 5) Magnetic profiles in the Valley of the Kings, in the area of KV 5                             | 14       |
| Fig. (1. 6) Block diagram of the GP-Radar system                                                          | 16       |
| Fig. (1. 7) Location of the GPR anomalies in the Valley of the Kings (West Valley)                        | 17       |
| Fig. (1. 8) GPR record of the location "C" in the West Valley                                             | 18       |
| Fig. (2. 1) Schematic diagram of the construction of the LaCoste and Romber gravimeter                    | 25       |
| Fig. (2. 2) Distribution of the Gravity profiles on the topographic map of the Valley of the Kings area   | 29       |
| Fig. (2. 3) Schematic diagram showing the location of base-station established in the Valley of the Kings | 32       |
| Fig. (2. 4) Time-Drift curve illustrate the drift correction                                              | 27       |

| Fig. (2. 5) Schematic diagram of the terrain correction due to effect of the undulating terrain                                                          | 39 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Fig. (2. 6) Topographic model with flat-topped and conic prism                                                                                           | 42 |
| Fig. (2. 7) Illustration of the convergence of the two terrain correction models applied to an analytic relief, with a density of 2.67 g/cm <sup>3</sup> | 45 |
| Fig. (2. 8) The effect of terrain corrections along the gravity profile B                                                                                | 48 |
| Fig. (2. 9) The effect of latitude correction along line L                                                                                               | 50 |
| Fig. (2.10) The precision of the measurements represented<br>by the standard deviation of the data measured<br>by D-188 and G-1043 of L&R Gravimeters    | 54 |
| Fig. (2.11) The Bouguer anomaly profile (measured by D-188 L&R) and topography along line A with underlined tombs                                        | 56 |
| Fig. (2.12) The Bouguer anomaly profile (measured by G-<br>1043 L&R) and topography along line B with<br>underlined tombs                                | 57 |
| Fig. (2.13) The Bouguer anomaly profile (measured by G-1043 L&R) and topography along line C                                                             | 58 |
| Fig. (2.14) The Bouguer anomaly profile (measured by D-<br>188 L&R) and topography along line P with<br>underlined tomb                                  | 59 |
| Fig. (2.15) The Bouguer anomaly profile (measured by G-1043 L&R) and topography along line Q with underlined tomb                                        | 60 |
| Fig. (2.16) The Bouguer anomaly profile (measured by G-1043 L&R) and topography along line L                                                             | 61 |

| Fig. (2.17) | The Bouguer anomaly profile (measured by D-188 L&R) and topography along line K                                      | 62 |
|-------------|----------------------------------------------------------------------------------------------------------------------|----|
| Fig. (2.18) | The Bouguer anomaly profile (measured by G-1043 L&R) and topography along line V                                     | 63 |
| Fig. (2.19) | The Bouguer anomaly profile (measured by G-1043 L&R) and topography along line M                                     | 65 |
| Fig. (2.20) | The Bouguer anomaly profile (measured by G-1043 L&R) and topography along line N                                     | 66 |
| Fig. (2.21) | The Bouguer anomaly profile (measured by D-188 L&R) and topography along line O                                      | 67 |
| Fig. (2.22) | The comparison between the Bouguer anomaly Profiles measured by the G&D models of the L&R Gravimeters along line A   | 69 |
| Fig. (2.23) | The comparison between the Bouguer anomaly Profiles measured by the G&D models of the L&R Gravimeters along line B   | 70 |
| Fig. (2.24) | The comparison between the Bouguer anomaly Profiles measured by the G&D models of the L&R Gravimeters along line P   | 71 |
| Fig. (2.25) | The comparison between the Bouguer anomaly Profiles measured by the G&D models of the L&R Gravimeters along line Q   | 72 |
| Fig. (3.1a) | Calculation of the gravity effect at spot locations along the gravity profiles                                       | 76 |
| Fig. (3.1b) | Geometric elements involved in the surface calculation of gravity effect which done on a rectangular horizontal area | 76 |

| Fig. (3. 2) Geometric elements involved in the calculations of gravity and magnetic anomalies caused by a polygonal prism           | 78  |
|-------------------------------------------------------------------------------------------------------------------------------------|-----|
| Fig. (3. 3) Schematic diagram of the entrance of the tomb of Ramses III                                                             | 82  |
| Fig. (3. 4) Lateral and top view of the geometric coordinates of the divided modeled bodies of the entrance of tomb of Ramses III   | 83  |
| Fig. (3. 5) Schematic diagram of the entrance of the tomb of KV 10 (tomb of Amenmesses)                                             | 90  |
| Fig. (3. 6) Schematic diagram of the entrance of the tomb of Ramses I                                                               | 93  |
| Fig. (3. 7) Lateral and top view of the geometric coordinates of the divided modeled bodies of the entrance of the tomb of Ramses I | 94  |
| Fig. (3. 8) Schematic diagram of the entrance of the tomb of Seti I                                                                 | 97  |
| Fig. (3. 9) Lateral and top view of the geometric coordinates of the divided modeled bodies of the entrance of tomb of Seti I       | 98  |
| Fig. (3.10) Schematic diagram of the entrance of the Engine Room                                                                    | 100 |
| Fig. (3.11) Lateral and top view of the geometric coordinates of the divided modeled bodies of the entrance of the Engine Room      | 101 |
| Fig. (3.12) The gravity effect of the entrances of the tombs of Seti I and the Engine Room on the line A                            | 108 |
| Fig. (3.13) The gravity effect of the entrances of the tombs of Ramses I and Seti I on the line B                                   | 110 |

| Fig. (3.14) | The gravity effect of the entrances of the tombs                                                                   |     |
|-------------|--------------------------------------------------------------------------------------------------------------------|-----|
|             | of Ramses I, Seti I and the Engine Room on the line C                                                              | 111 |
| Fig. (3.15) | The gravity effect of the entrances of the tombs of Ramses III and Amenmesses (KV 10) on line P                    | 113 |
| Fig. (3.16) | The gravity effect of the entrances of the tombs of Amenmesses (KV 10) and Ramses III on line Q                    | 114 |
| Fig. (3.17) | The gravity effect of the entrance of the tombs of KV 21, KV 27 and KV 28 on line L                                | 116 |
| Fig. (4, 1) | 2½-D body                                                                                                          | 121 |
| Fig. (4. 2) | The constructed model of the corridor of the tomb of Amenmesses (KV 10)                                            | 131 |
| Fig. (4. 3) | The different steps of correcting, processing and interpreting the data of the gravity profile along line Q        | 132 |
| Fig. (4. 4) | The constructed model of the corridors of the tomb of Ramses III                                                   | 134 |
|             | The different steps of correcting, processing and interpreting of the data of the gravity profile along the line P | 135 |
| Fig. (4. 6) | The constructed model of the tomb of Ramses I.                                                                     | 138 |
| Fig. (4. 7) | The different steps of correcting, processing and interpretation of the data of the gravity profile along line B   | 141 |
| Fig. (4. 8) | Schematic diagram showing the distribution of the room and corridors in the tombs of Seti I and Ramses I.          | 143 |