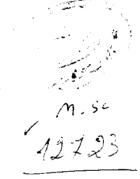
SOME THYROID ASPECTS IN DIABETES MELLITUS

THESIS


FOR PARTIAL FULFILLENT OF MASTER DEGREE

 TN

GENERAL MEDICINE

Presented By

Kamal Rizkalla Saba

supervised by

PROF. DR. AHMED GHARLEB

Ass. Prof. Dr. Moghazi Ali Mahgoub Ass. Prof. Dr. Sayed Raafat

General Medicine Ain Shems University

PACULTY OF MEDICINE AIN SHAMS UNIVERSITY

1980

ACKNOWLEDGEMENT

I would like to express my deep thanks and gratitude to Prof.Dr. Ahmed Ghæreeb. Prof. of medicine and head of endoerine unit Ain Shams University for giving me the chance to performe this work in the laboratory department of the endocrine unit and for his effecient supervision, fatherly assistance and encouragement.

I also wish to express my deep thanks to Dr. Moghazi
Ali Mahgoub Ass. Prof of medicine in the endocrine unit
Ain Shams University and to Dr. Sayed Raafat Ass. Prof of
mdocrine unit Ain Shams University for the planning of
this thesis and the continuous encouragement, guidance and
supervision.

I would like to express my thanks to Dr. Repri Faris in the department of hygine, faculty of medicine Ain Shams University for helping me in the statistic studies of this work.

Thanks to Mr. Nabil Mitry and Mr. Magdi Abass and Miss Nadia El Wardani and Miss Zeinab Awod, for their role in the laboratory estimation of the blood samples.

Lastly I feel deeply thankful to all those who helped me in preparing this thesis.

CONTENTS

	Page
Introduction	1
Thyroid hormone synthesis and release	2
Insulin secretion in diabetics	24
Oral hypoglycemic compounds	27
The interrelation between diabetes mellitus and .	
atherosclerosis	33
Hypothyroidism and atherosclerosis	37
The incidence of combined diabetes mellitus and	
hypothyroidism	43
The possible explanations of hypothyroidism in some	
diabetic patients	46
Materials and methods	80
Results	88
Discussion	113
Summary	121
References	123
Anobia aummonu	7.00

INTRODUCTION

It is common to find in patients with diabetes mellitus disturbance in lipid' metabolism evidenced by hypercholesterolaemia (Danowski et al, 1966) and (Raafat, 1973).

Since hypothyrodism is also accompanied by changes in blood lipids, the aim of this thesis is to evaluate thyroid function in diabetes and to find out to what extent this contributes to this important biochemical change which leads to most of the major complications of diabetes.

REVIEW OF LITERATURE

TITEDID HORMONE SYNTHESIS AND RELEASE (Tong 1974) Iodine and thyroid hormone

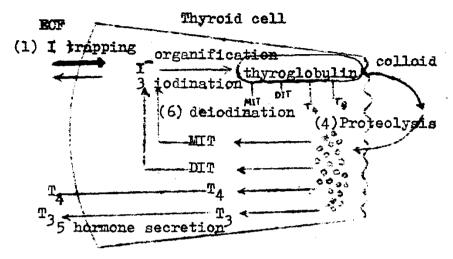
The iodine in the body is distributed as follows:

50% in muscle, 20% in the thyroid gland, 10% in skin.

6% in bone and 14% in other tissues.

lodine is an essential constituent of the thyroid hormones tetraiodothyronine (T₄) and triiodothyronine (T₃) .

In humans the iodine secreted in hormonal form by the thyroid normally amounts to only about 50 ug/day derived from dietafy iodine intake that normally need not exceed 200 ug/day.


Thyroid iodine represents an iodine reserve sufficient for long as 6 monthes when exogenous supplies of iodine are compeletely cut off. Of the iodine in the thyroid more than 95% occured as stored colloid in the form of iodotyrosine and iodothyronine residues tightly bound within the polypeptide sequence of thyroglobulin.

The remaining iodine consists mainly of trapped iodine along with varied but small proportions of particulate iodeproteins, iodinated lipids and free iodothyronines and iodotyrosines.

The iodine in plasma also occur in protein bound and nonprotein bound moities. Unlike the thyroglobulin iodine of the gland, plasma protein bound iodine (BRI) Consists of the iodothyronine hormones loosely attached by nencovalent bound to the plasma proteins in a concentration of about 4 - 8 ug / 100 ml in the plasma of normal man.

The plasma inorganic iodide concentration varies with iodine intake but normally does not exceed 1 ug/ 100 ml. It is from this iodids pool where iodide is provided at a concentration of less than 10⁻⁷ M, that iodide is trapped by the thyroidal iodide pump and transported into the gland for the iodination of the thyroglobulin.

The pathway of iodine metabolism in the thyroid:-

- 1. Trapping: Extracellular iodide is actively
 transperted through the basal membrane
 surface into the follicular cell.
- 2. Organification: Within the cell probably at a site

 very near to the surface of the apical

 microvilli the iodide is oxidised.
- 3. Binding to tyrosine and Coupling of moniodo and diiodo compound.

The newly iodinated thyroglobulin is promply extruded into the follicular lumen for storage.

- 4. Proteolysis: Stored thyroglobulin is resorbed by a pinocytosis like process and apparently through the mediation of lysosomes the thyroglobulin is hydrolyzed so free iodotyrosines and iodothysonines are released.
- 5. Hormone secretion: The iodothyronines are discharged into the E.C.F.
- 6. <u>Deiodination</u>: The iodotyrosines are deiodinated

 by speciefic enzymes and their iodine

 recycled through the iodine pool.

NB: All such steps are enzymatically determined .

3.5 Diiodotyrosine

Thyroxine

Active transport of the iodide:-

Concentration of the iodide by the thyroid involves an active transport process because iodide is transported into the thyroid against an electrochemical gradient. The iodide transport mechanism is dependent on exidative phosphorylation as demonstrated by the fact that it can be inhibited by anoxia, CN, 2.4 Dinitrophenol and hypothermia.

Also iodide transport is competitively inhibited by such similar monovalent anions as SCN and CIO_4^{-} .

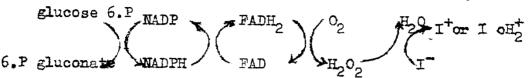
Intrathyroidal iodide is not irreversibly trapped within the gland but exists there in a diffusible form freely exchangable with external iodide. Hence previously concentrated radioiodide will exit from the gland if the transport machanism is inhibited by CIO_4^- or by respiratory inhibition via CN_4^- , anoxia or hypothermia.

The magnitude of the T:S ratio (which is the ratio of the iodide concentration of the thyroid to that of the serum) is most readily viewed to be the resultant of the opposing process of iodide influx and efflux. Influx component is primarily effected by an iodide pump while the efflux reflects iodide diffusion or leak.

Mode of action of TSH in the stimulation of the iodide transport mechanisms-

TSH stimulation of the iodide influx could be blocked by Actinomycin D (an antibiotic which inhibit DNA dependent PNA synthesis) and by puremycin or cycloheximide which inhibits protein synthesis.

These finding indicate that the TSH action involves the induction of enzyme which contributes to an augmentation of the capacity of the iodide pump without affecting its apparent affinity for iodide.


It might be that TSH regulates the induction of an iodide transferase.

Although iodide is asunulated by isolated thyroid cells, the lumen of the intact follicle serve as a secondary reservoir for accumulated iodide and the existense of iodide concentration in the folliculer lumen indicates that an iodide pump exists both at the basal cell surface to transport iodide from the extracelluler fluid into the cell and at the apical cell surface to transport iodide from cell to lumen. Such a tandem machanism would provide for greater efficiency in the intrathyroidal iodida accumulation. Iodide axidation: H202 has become accepted as the agent which oxidize iodide for the iodination of thyroglobulin because of the oxidizing agent commonly present in the biological systems only 02 and H202 with redex potentials of + 0.82 and + 1.3V respectively, are stronger oxidizing agent than iodine .

A clear demonstration of the ability of $\rm H_2O_2$ to promote iodination may be by simply adding $\rm H_2O_2$ to a solution of iodide and tyrosine. In the abcense of $\rm H_2O_2$ no iodination will occur, upon addition of the $\rm H_2O_2$ iodotyrosine formation will proceed. Than the experimentation has been directed at the characterization of the peroxidase which might catalyze the reaction between $\rm H_2O_2$ and iodide .

In vitro it has been found that the peroxidase preparations stimulate $\mathrm{H_2O_2mediated}$ iodination reactions by as much as 100 folds, but it still remains to be ascertained that these peroxidases are in fact involved in the process of thryoglobulin iodination as it occurs in the thyroid. But against this possibility is that the rates of iodide exidation in the thyroid are so very slow that it seem entirely reasonable to expect that $\mathrm{H_2O_2}$ could be generated at adequate rates to support this process and that peroxidase action need not be involved.

At last we can correlate between iodination and glucose oxidation which might be portrayed schematically as follows-glucose 6.P NADP

The well known stimulatory action of TSH on glucose oxidation and iodination can be explained either as:-

- 1. A primary stimulation of the glucose oxidation which would secondarily increase NADP reduction, H_2O_2 production and hence iodination .
- 2. Or a primary increase in iodination which would secondarily enhance reoxidation of NADPH, shift the NADP-NADPH ratio toward NADP and this increase glucose oxidation.

The substitution of the iodine into the tyrosyl residues of thyroglobulin:-

The name (tyrosine iodinase) has been applied to a purely hypothetical enzyme that is postulated to catalyze the substitution of iodine onto the tyrosyl residues of the