

Extraction of uranium and valuable elements from Abu Hamata poly-mineralized sedimentary rocks, Southwestern Sinai, Egypt.

Thesis Submitted for Ph.D. Degree of Science in Chemistry (Analytical and Inorganic)

By

Walid Mahmoud Abdellah

(M. Sc. 2009)

Assistant lecturer-Nucar Materials Authority

To
Chemistry Department
Faculty of Science
Ain Shams University

Faculty of Science

Extraction of uranium and valuable elements from Abu Hamata poly-mineralized sedimentary rocks, Southwestern Sinai, Egypt.

Thesis Submitted for Ph.D. Degree of Science in Chemistry

By

Walid Mahmoud Abdellah (M. Sc. 2009)

 T_{0}

Chemistry Department-Faculty of Science Ain Shams University

SUPERVISED BY

Prof. Dr. Mohamed F. El-ShahatProf. of Analytical and Inorganic Chemistry
Faculty of Science-Ain Shams University

Prof. Dr. Tarik El- Sayed Amer
Prof. of Ores Processing
Nuclear Materials Authority, Cairo

Dr. Abdallah Solimam AlShami

Ass. Prof. of Geology, Nuclear Materials Authority, Cairo

Head of Chemistry Department

Prof. Dr. Hamed Ahmed Younes Derbala

2014

Approval Sheet

Extraction of uranium and valuable elements from Abu Hamata poly-mineralized sedimentary rocks, Southwestern Sinai, Egypt.

By Walid Mahmoud Abdellah

(M. Sc. 2009)

This Thesis for Ph.D. Degree has been Approved by:

Prof. Dr. Waheed Abdallah Badawy

D.Sc., Prof. of Chemistry, Faculty of Science, Cairo University

Prof. Dr. Ibrahim El-Sayed Ahmed

Prof. of Analytical and Inorganic Chemistry, Faculty of Science, Banha University

Prof. Dr. Mohamed F. El-Shahat

Prof. of Analytical and Inorganic Chemistry, Ain Shams University

Prof. Dr. Tarik El- Sayed AmerProf. of Ores Processing, Nuclear Materials Authority

Acknowledgment

Firstly my deepest thanks to **Allah** who gave me the power to complete this work.

My deepest appreciations are due to my supervisors, Prof. Dr. M. F. El-Shahat, professor of analytical and inorganic chemistry, Faculty of Science, Ain Shams University, Prof. Dr. T. E. Amer, professor of ores processing, Nuclear Materials Authority, Ass. Prof. Dr. A. S. El Shamy, Assistant professor of Geology, Nuclear Materials Authority and Ass. Prof. G. M. Abdel Wahab (internal supervisor), Nuclear Materials Authority, for their supervision, encouragement, Suggestions, advices during laboratory work, supplying facilities and for perusal of the entire manuscript.

I would like to express my deep thanks to all my colleagues at Pilot Plant Experimental Department, especially for Mr. A. M. Abdel Baky and Mrs. Shymaa Magdy for their helpful during the experimental work.

Also, the author likes to express his deep gratitude and thanks to his friends and to all who contributed in a way or another in the accomplishment of this work.

Finally, my deep thanks for all my family who spent much of their time to promote me.

بسم الله الرحمن الرحيم (إِنَّ الله مَعَ الَّذِينَ اتَّقُوا وَ الَّذِينَ الله مَعَ الَّذِينَ اتَّقُوا وَ الَّذِينَ هُم مُّحْسِنُونَ)) هم مُحْسِنُونَ)) صدق الله العظيم

(النحل آية: ١٢٨)

DEDICATION

I dedicate this work to:

- My parents who supported and encouraged me all of the time.
- My wife for her patience, efforts and generous support.
- My sweet children, Mahmoud, Israa & Karma.
- My brothers & sisters.
- And all my family.

Walid

Contents

	Page No
Chapter I: Introduction	1-4
Chapter II: Literature Survey and Theoretical Aspects	5-46
II.1.Hydrometallurgical characteristics of uranium ores	5
II.1.1. Natural resources of uranium	5
II.1.1. 1.Uranium resources in Egypt	6
II.1 2. Uses of uranium	7
II.1.3. Processing of uranium ores	8
II.1.3.1. Leaching process of uranium ores	8
II.1.3. 2. Extraction processes of uranium	10
II.1.3.2.1. Extraction of uranium by using ion exchange resins	10
II.1.3.2.1.1.Chemistry of the anion exchange process	11
II.1.3. 2.2.Solvent extraction of uranium	12
II.1.3. 2.3.Direct precipitation of uranium	14
II.2.Hydrometallurigical characteristics of lanthanides	16
II.2.1. Natural resources of lanthanides	16
II.2.1.1.Lanthanides resources in Egypt	17
II.2.2. Uses of lanthanides	18
II.2.3. Processing of lanthanides	19
II. 2.3.1. Lanthanides extraction	24
II.2.3.1.1.Fractional crystallization	24
II.2.3.1.2.Fractional precipitation	25
II.2.3.1.3. Selective oxidation / reduction	25
II.2.3.1.4.Solvent extraction technique	26
II.2.3.1.5.Ion exchange chromatography	27
II.3.Hydrometallurgical characteristics of boron	28
II.3.1.Resources of boron	28
(1).Boron precipitated resources	28
(2). Boron dissolved resources	29
(3). Boron waste resources	29
II. 3. 1.1. Boron resources in Egypt	29

	II. 3.2. Uses of Boron	30
	II.3.3. Processing of boron	30
	II. 3. 3.1.Processing of waste borosilicate compounds	30
	II.3.3.2. Processing of other borates	32
	II.3.4. Boron Extraction	33
	II.3.4.1. Organic solvent extractions	33
	II.3.4.2. Ion exchange resin extraction technique	34
	II.4. Hydrometallurgical characteristics of vanadium	37
	II.4.1.Resources of vanadium	37
	II.4.1. 1. Vanadium resources in Egypt	38
	II.4. 2. Uses of vanadium	38
	II.4.3. Processing of vanadium	40
	II.4.3.1. Acidic leaching of vanadium	40
	II.4.3.2. Leaching of vanadium ores via salt roasting	41
	II.4.3.3. Alkaline leaching of vanadium ores	43
	II.4.3.4. Extraction of vanadium from leach liquors	45
Chapte	r III: Experimental	47-58
	III.1.Materials	47
	III.1.1.Sample	47
	III.1.1.Mineralogical characterization	47
	III.1.1.2. Chemical characterization	49
	III.1.1.2.1. Determination of chloride ions	50
	III.1.1.2.2.Determination of sulfates anions	50
	III.1.1.2.3. Determination of lanthanides	50
	III.1.1.2.4. Determination of Uranium	50
	III.1.1.2.5. Determination of Trace elements	51
	III.1.2. Chemicals and reagents	51
	III.2. Methods	53
	III.2.1.Processing procedures	53
	III.2.1.1. Leaching process	53
	III.2.1.1.1.H ₂ SO ₄ acid agitation leaching of the raw ore material	54
	III.2.1.1.2. Roasting process of the ore residue by using NaOH	54
	III.2.1.2.Extraction process	55

III.2.1.2.1. Extraction of uranium and lanthanides	55
III.2.1.2. 1. 1. Extraction of uranium by using anion exchange resin	56
III.2.1.2.2. Direct precipitation of lanthanides	56
III.2.1.2. 2.1. Separation of yttrium from the prepared lanthanide concentrate	
III.2.1.2. 2.2. Separation of cerium from the lanthanide cake free from yttrium	57
III.2.1.2.3. Ion exchange extraction of boron and vanadium	57
Chapter IV: Results and Discussion	59-117
IV.1. Characteristics of Abu Hamata sandy claystone ore material	59
IV.1.1. Mineralogical composition	59
IV.1.2.Chemical composition	62
IV.2. Processing results of Abu Hamata sandy claystone ore sample	64
IV.2.1.H ₂ SO ₄ acid agitation leaching of the raw ore material	64
IV.2.1.1. Effect of H ₂ SO ₄ acid concentration	65
IV.2.1.2. Effect of solid/ liquid (S/L) ratio	66
IV.2.1.3. Effect of leaching time	67
IV.2.1.4. Effect of leaching temperature	69
IV.2.2. Extraction of uranium and lanthanides	72
IV.2.2.1. Extraction of uranium by using anion exchange resin	72
IV.2.2.1.1.Direct extraction of uranium by anion exchange resin	73
IV.2.2.1.2.Minimizing of SO ₄ ²⁻ ions concentration in the prepared H ₂ SO ₄	, 0
_acid_leach solution .	75
IV.2.2.1.3. Extraction of U from the treated pregnant sulfate solution by using anion exchange resin	76
IV.2.2.1.4.Elution process	78
IV.2.2.1.5.Uranium precipitation	80
IV.2.2.1.6.Purification of the produced crude yellow cake	81
IV.2.2.2. Direct precipitation of lanthanides	83
IV.2.2.2. 1. Separation of yttrium and cerium from Abu Hamata lanthanide cake	00
IV.2.2.2. 1.1. Selective separation of yttrium from the prepared lanthanide cake	87
IV.2.2.2.1.1.1.Effect of (NH ₄) ₂ CO ₃ concentration	87
IV.2.2.2. 1.1.2.Effect of dissolution time	88
IV.2.2.2. 1.1.3.Effect of dissolution temperature	89
IV.2.2.2. 1.2. Separation of Ce (IV) from the prepared Ln cake	91

	IV.2.2.2. 1.2.1. Separation of Ce (IV) under controlled pH	91
	IV.2.2.2. 1.2.2.Effect of dissolution time	92
	IV.3. Alkali roasting of the ore residue	93
	IV.3.1. 1. Effect of ore residue / NaOH mass ratios	94
	IV.3.1. 1.2. Effect of roasting temperature	96
	IV.3.1. 1. 3. Effect of roasting time	98
	IV.3.2. Extraction of boron and vanadium from the prepared alkaline leach	
	liquor	100
	IV.3.2.1. Si-gel precipitation before Loading of boron and vanadium	102
	IV.3.2. 2.Loading process of both of boron and vanadium	103
	IV.3.2.3. Elution of the loaded boron and vanadium	106
	IV.3.2.3.1. Elution of boron and preparation of pure boric acid (H ₃ BO ₃)	107
	IV.3.2.3.2. Elution process of vanadium and preparation of pure red cake	
	(V_2O_5)	111
	IV.4.Proposed technological flowsheet	113
Chapter V	: Summary and Conclusion	118-121
References	S	122-142
		1 <i>TH</i>

List of Tables

Table No.		Page No
Table (1) :	Types of uranium ores and their deposits reserve (1000 t U), (Shatalov, et al. 2005).	6
Table (2):	Vanadium deposits in Egypt.	39
Table (3):	Chemicals and reagents used in the present work.	52-53
Table (4):	The studied factors controlling sulfuric acid agitation leaching of the raw ore material.	54
Table (5):	The studied factors controlling roasting process of the ore residue.	55
Table (6):	Complete chemical composition of Abu Hamata sandy claystone ore sample.	63
Table (7):	Effect of H_2SO_4 acid concentration upon leaching efficiencies of the metals of interest.	65
Table (8):	Effect of solid/liquid (S/L) ratio upon leaching efficiencies of the metals of interest.	67
Table (9):	Effect of leaching time upon leaching efficiencies of the metals of interest.	68
Table (10):	Effect of leaching temperature upon leaching efficiencies of the metals of interest.	70
Table (11):	Chemical composition of the prepared sulfuric acid leach liquor.	71
Table (12):	Results of the original sulfate effluent solution.	74
Table (13):	Effect of CaCO ₃ amount upon free SO ₄ ²⁻ and Cl ⁻ anions concentrations.	76
Table (14):	Results of the treatment sulfate effluent solution.	77
Table (15):	Results of the eluate uranium solution from saturated Amberlite IRA_{400} anion exchange resin.	79
Table (16):	ICP-ES chemical analysis of the prepared Ln cake.	86
Table(17):	Effect of (NH4)2CO3 concentration upon Y dissolution efficiency.	88
Table (18):	Effect of dissolution time upon Y dissolution efficiency.	88
Table (19):	Effect of dissolution temperature upon Y dissolution efficiency.	89
Table (20):	Effect of pH upon Ce(IV) recovery and purity.	91

Table (21):	Effect of dissolution time upon Ce(IV) recovery and purity.	92
Table (22):	Effect of Ore /NaOH mass ratio upon the dissolution efficiencies of	
,	boron and vanadium.	95
Table (23):	Effect of roasting temperature upon the dissolution efficiencies of boron	
	and vanadium.	97
Table (24):	Effect of roasting time upon the dissolution efficiencies of boron and	
	vanadium.	98
Table (25):	Characteristics of ion exchange resin IRA ₇₄₃ .	100
Table (26):	The analytical data of the alkaline effluent solution.	105
Table (27):	Elution data of boron from saturated Amberlite IRA743 anion exchange	
	resin.	108
Table (28):	Elution data of vanadium from saturated Amberlite IRA ₇₄₃ anion exchange	
_ ===== (===) •	resin.	112

List of Figures

Figure No.		Page No.
Fig. (1):	Geologic map of the study area (After AlShami, 2003)	3
Fig. (2):	Uranium types and resources in Egypt (Mahdy, 2011)	7
Fig. (3):	Process options for treating various types of U ores (Lunt et al. 2007).	9
Fig. (4):	Monazite processing by acid treatment	21
Fig. (5):	Monazite processing by alkali treatment	22
Fig. (6):	Chemical processing of bastnasite.	23
Fig. (7):	Chemical processing of xenotime.	24
Fig. (8):	General flowsheet of vanadium ores processing	42
Fig. (9):	Schematic diagram showing the applied experimental work upon the study ore material.	48
Fig. (10):	Diagrammatic sketch showing the structure of the montmorillonite mineral.	<i>60</i>
Fig. (11):	XRD pattern of the identified renardite mineral grains.	61
Fig. (12):	EDX analysis of Ln adsorbed upon montmorillonite mineral grains.	<i>62</i>
Fig. (13):	Effect of H ₂ SO ₄ acid concentration upon leaching efficiencies of the metals of interest	66
Fig. (14):	Effect of solid/liquid (S/L) ratio upon leaching efficiencies of the metals of interest	67
Fig. (15):	Effect of leaching time upon leaching efficiencies of the metals of interest	69
Fig. (16):	Effect of leaching temperature upon leaching efficiencies of the metals of interest	70
Fig. (17):	Loading curve of U from the original prepared sulfuric acid leach liquor	74
Fig. (18):	Loading curve of U from the treated sulfuric acid leach liquor.	<i>78</i>
Fig. (19):	Elution curve of U from the loaded Amberlite	80
Fig. (20):	EDX analysis of the crude yellow cake before purification	81
Fig. (21):	XRD pattern of the identified highly pure U ₃ O ₈	82
Fig. (22):	EDX analysis of highly pure U ₃ O ₈	83
Fig. (23):	EDX analysis of the prepared impure Ln-cake associated with Ca.	85
Fig. (24):	EDX analysis of the prepared pure Ln-cake	85
Fig. (25):	EDX analysis of the prepared pure Y_2O_3	90

Fig.(26):	XRD analysis of the prepared pure CeO ₂	93
Fig.(27):	Effect of ore/ NaOH mass ratio upon the dissolution efficiencies of boron and vanadium	96
Fig. (28):	Effect of roasting temperature upon the dissolution efficiencies of boron and vanadium	97
Fig. (29):	Effect of roasting time upon the dissolution efficiencies of boron and vanadium	100
Fig. (30):	A scheme of building chemical structure of Amberlite IRA ₇₄₃	100
Fig. (31):	A schematic of boron uptake from the aqueous solutions	101
Fig.(32):	A schematic of vanadium uptake from the aqueous solutions	102
Fig. (33):	XRD pattern of the produced SiO ₂	103
Fig. (34):	Loading curve of both boron and vanadium upon Amberlite IRA743 anion exchange resin.	106
Fig. (35):	A schematic diagram showing boron elution from the loaded resin	107
Fig. (36):	Elution curve of boron from the loaded Amberlite IRA 743	109
Fig. (37):	XRD pattern of the identified impure H ₃ BO ₃	110
Fig.(38):	XRD pattern of pure H ₃ BO ₃	110
Fig. (39):	A schematic diagram showing vanadium elution mechanism from the loaded resin	111
Fig. (40):	Elution curve of vanadium from the loaded Amberlite IRA 743	112
Fig. (41):	EDX analysis of the prepared red cake (V ₂ O ₅)	113
Fig. (42-a):	Proposed technical flowsheet for the processing of Abu Hamata sandy claystone raw ore material for the recovery of U ₃ O ₈ , Y ₂ O ₃ and CeO ₂	116
Fig.(42-b):	Proposed technical flowsheet for the processing of Abu Hamata ore residue for the recovery of H ₃ BO ₃ and V ₂ O ₅	117

List of Abbreviations

B Boron

Ce Cerium

Conc. Concentration

EDX Energy dispersive x-rays

h Hour(s)

IX Ion exchange resin

Eluex IX+SX

L.O.I. Loss of ignition

Ln Lanthanides

N.M.A. Nuclear Materials Authority

SX Solvent extraction

S/L Solid/liquid

t Ton

U Uranium

V Vanadium

w.s.r. Wet settled resin

XRD X-ray diffraction

Y.C. Yellow cake

Y Yttrium