PERIPHERAL T-LYMPHOCYTE SUBPOPULATIONS

IN

INSULIN-DEPENDENT DIABETES MELLITUS

Thesis

Submitted for partial fulfillment

٥f

Master Degree in Internal Medicine

10 402

Вy

MAHER MICHEL SHENOUDA

M.B., B.Ch.

Supervised by

PROF. DR. NADIA L. ALANSARI

Prof. of Internal Medicine

Ain Shams University

34 = 18

PROF. DR. MONA MOHAMMAD RAFIK

Assist. Prof. of Clinical

Pathology and Immunology

Ain Shams University

DR. IBRAHIM MOHAMMAD MOKHTAR

Lecturer of Internal Medicine

Ain Shams University

Faculty of Medicine
Ain Shams University
1990

ACKNOWLEDGEMENT

It is my pleasure to express my thanks and gratitude to Prof. Dr. Nadia Lotfi Al-Ansari, Prof. of Internal Medicine, Faculty of Medicine, Ain Shams University, for her sincere supervision of this work. I am deeply indebted to her for the constant encouragement and precious suggestions I have received throughout the course of this work. She offered me a lot of her time and effort; this work could not have been done without her generous help and expert guidance.

I would also like to express my thanks and gratitude to Prof. Dr. Mona Mohammad Rafik, Assistant Prof. of Clinical Pathology and Immunology, Faculty of Medicine, Ain Shams University, for her kind supervision, keen interest in the subject, and generous help throughout the course of this work.

I would like to thank Dr. Ibrahim Mohammad Mokhtar, lecturer of Internal Medicine, for his kind advice and guidance. I offer my thanks also to Prof Dr. Alia Sadek Mostafa, Assist. Prof. of Clinical Pathology, for her kind help.

Finally, I thank all others who have been behind the achievement of this work.

Maher Michel Shenouda 1990

CONTENTS

INTRODUCTION AND AIM OF THE WORK
LIST OF ABBREVIATIONS3
REVIEW OF LITERATURE.
CHAPTER I: THE IMMUNE SYSTEM
INTRODUCTION5
B LYMPHOCYTES7
Antigens Recognized by Lymphocytes8
Antibodies9
Monoclonal and Polyclonal Antibodies1
The Idiotype/Anti-idiotype Network
T LYMPHOCYTES15
The Role of Thymus in T-Cell Function15
Antigens Recognized by T Lymphocytes16
The T-Cell Receptor (TCR)
T-Cell Differentiation Antigens
T-Cell Activation
T-Lymphocyte Subpopulations25
Phenotype and Function of T Cells33
The Major Histocompatibility Complex and
T-Cell Function
LARGE GRANULAR LYMPHOCYTES39
Natural Killer Cells39
Antibody-Dependent Cellular Cytotoxicity40
ANTIGEN-PRESENTING CELLS41
THE COMPLEMENT SYSTEM43
ALTEG T MALINTEN

CHAPTER II: DIABETES MELLITUS: THE CLINICAL SYNDROME49
INTRODUCTION49
DIAGNOSTIC CRITERIA OF DIABETES MELLITUS51
The Oral Glucose Tolerance Test53
The 2-Hour Blood Sugar Screen55
CLASSIFICATION OF DIABETES MELLITUS56
IDDM and NIDDM57
IDDM or NIDDM?59
MRDM61
Impaired Glucose Tolerance62
DIFFERENCE IN PATHOGENESIS BETWEEN IDDM AND NIDDM.63
DIABETIC COMPLICATIONS67
Common Clinical Patterns of Chronic Diabetic
Complications68
Pathogenetic Mechanisms of Chronic Diabetic
Complications70
CHAPTER III: AETIOLOGY AND PATHOGENESIS OF IDDM78
INTRODUCTION78
ROLE OF GENETIC FACTORS80
MHC Associations in IDDM80
The Permissive Role of MHC Genes in IDDM82
ROLE OF NON-GENETIC FACTORS84
Role of Viruses85
Role of Toxins86
ROLE OF IMMUNE SYSTEM88
Immune Changes Characterizing the Clinical
Onset of IDDM89
Immune Changes in "Prediabetics"104
Autoimmune Destructive Stages in IDDM108

The Autoantigen in IDDM Autoimmunity111
Inappropriate MHC Class II Expression on Beta
Cells in IDDM
Twin Transplant Experience in IDDM118
Immunosuppression in IDDM
CURRENT HYPOTHESIS ON THE PATHOGENESIS OF IDDM124
MATERIAL AND METHODS
RESULTS140
DISCUSSION
SUMMARY
REFERENCES
ARABIC SUMMARY.

INTRODUCTION AND AIM OF THE WORK

AIM OF THE WORK

The distinction between insulin-dependent (Type I) and non-insulin dependent (Type II) diabetes mellitus (IDDM and NIDDM respectively) as two separate disorders has been recently established beyond doubt. The finding of a definite - and essential - role for an environmental factor in 'initiating' the disease process in IDDM is an important differentiating feature which has been behind hopes of possible prevention of this disease type. The role played by genetic factors in the aetiology of IDDM (MHC phenotype susceptibility or resistance) is another differentiating feature (Adams et al., 1984; Krolewski et al., 1987b).

Recently, evidence has accumulated that implicates an autoimmune mechanism in the pathogenesis of IDDM. Many autoimmune changes (both humoral and cell-mediated) are characterizing the clinical onset of IDDM, and have been behind the recent interest in immunosuppressives as possible 'curative' agents in those IDDM patients who might still be at an early stage of the autoimmune disease process (Bottazzo et al., 1985; Eisenbarth, 1986; Bach, 1988).

Among the autoimmune changes described in IDDM, T-lymphocyte relations with pancreatic beta cells have recently received much

Introduction and Aim of the Work

attention. It has been known that different T-lymphocyte subpopulations have the capacity to magnify or diminish immune responses (helper and suppressor T cells respectively), as well as to destroy cells (cytotoxic T cells). T-lymphocyte subpopulation changes in IDDM have been recently described and suggested as having a fundamental role in the aetiology and pathogenesis of IDDM (Eisenbarth, 1986; Editorial, 1988).

The aim of this work is to study peripheral T-lymphocyte subpopulations (helper and suppressor-cytotoxic T cells, as well as the ratio between them) in IDDM, and - through this - to highlight their aetiologic role in the context of the autoimmune mechanism that ends in the destruction of the insulin-producing beta cells in the pancreatic islets of Langerhans.

Introduction and Aim of the Work

LIST OF ABBREVIATIONS

LIST OF ABBREVIATIONS

ADCC: Antibody-dependent cellular cytotoxicity.

AGEs : Advanced glycosylation end-products.

AIDS: Acquired immuno-deficiency syndrome.

APC : Antigen-presenting cell.

ARIs: Aldose reductase inhibitors.

BB : Bio-Breeding (rats).

C : 'Complement', complement component.

CD : Cluster of differentiation (T-cell differentiation

antigen)

CF-ICA: Complement-fixing islet cell antibody.

DM : Diabetes mellitus.

Fab : Antigen binding fragment (of an immunoglobulin unit).

Fc : Crystallizable fragment (of an immunoglobulin unit).

2HBSS: 2-Hour Blood Sugar Screen (test).

HIV : Human immunodeficiency virus.

HLA : Human leucocyte antigen.

IAA : insulin autoantibody.

ICA : Islet-cell antibody.

ICSA: Islet-cell surface antibody.

IDDM : Insulin-dependent diabetes mellitus.

IFN : Interferon.

Ig : Immunoglobulin.

IGT : Impaired glucose tolerance.

IL : Interleukin.

List of Abbreviations

IL-2r: Interleukin-2 receptor.

LAK : Lymphokine-activated killer (activity).

LGL : Large granular lymphocyte.

mAb : Monoclonal antibody.

MHC : Major histocompatibility complex.

MODY: Maturity-onset diabetes of the young.

MRDM: Malnutrition related diabetes mellitus.

NIDDM: Non-insulin dependent diabetes mellitus.

NK : Natural killer (cells).

NOD : Non-obese diabetic (mice).

OGGT : Oral glucose tolerance test.

SD : Standard deviation.

SLE : Systemic lupus erythematosus.

SRBC : Sheep red blood cells.

Tc : Cytotoxic T (lymphocytes).

TCR : T-cell receptor.

Td : Delayed hypersensitivity T (lymphocytes).

Th : Helper T (lymphocytes).

Ts : Suppressor T (lymphocytes).

List of Abbreviations

REVIEW OF LITERATURE

CHAPTER I THE IMMUNE SYSTEM

INTRODUCTION

The immune system should be thought of as an essential part of the homeostatic mechanism, continually keeping out and destroying invaders and abnormal cells as they appear. At the same time it is regulating its own cells as they develop and circulate. Immune reactions are occurring in healthy individuals continuously and, in addition, they play important roles in most disease processes (Mc Michael, 1987).

The immune responses are distinguished from the non-specific defence mechanisms, such as inflammation, by the 'specificity' of the reaction, which is not only in terms of antibody responses but is also true of the cellular immune responses. The ability to distinguish between self and non-self is a part of this specificity. Another distinguishing feature of immune responses is 'memory' by which a second challenge with a stimulus provokes a more rapid and more vigorous immune response (Paul, 1988).

Immune reactions can be divided into two: those dependent on antibody (humoral reactions) and those dependent on T lymphocytes (cell-mediated reactions); which is indicative of the basic division of lymphocytes into two types, B and T cells.

The Immune System

These interact with each other and with a third important cell: the 'antigen presenting cell' (Henry & Claman, 1987; Mc Michael, 1987).

Both B and T cells arise from a stem cell residing in bone marrow in postnatal life. B lymphocytes are independent of the thymus and are responsible for the release of specific antibody molecules. T lymphocytes, on the other hand, are dependent on the presence of a functioning thymus and have a high binding affinity for the antigen (Lessof, 1988; Roitt, 1988).

About 5-10% of peripheral blood lymphocytes lack the identifying features of B or T cells. These were previously called 'null cells' and are having the 'large granular lymphocyte' (LGL) morphology. They comprise both the natural killer (NK) cells and cells mediating the antibody-dependent cellular cytotoxicity (ADCC) (Haynes & Fauci, 1987; Roitt, 1988).

The Immune System