Carotid Endarterectomy For Asymptomatic High Risk Cardiac Patients Value And Limitations

Thesis

Submitted for Partial Fulfillment of M.D Degree In General Surgery

Ву

Ayman Saad El-Said

M.B., B.Ch., M.S.

Under Supervision Of

Prof./ Mohamed Maged El-Deeb

Professor of Vascular Surgery
Faculty of Medicine – Ain Shams University

Prof./ Mostafa Soliman Abdel-Bari

Professor of Vascular Surgery
Faculty of Medicine – Ain Shams University

Dr./ Wageh Fawzi Abdel-Malek

Assistant Professor of Vascular Surgery Faculty of Medicine – Ain Shams University

Dr./ Mohamed Amin El-Sharawi

Assistant Professor of Vascular Surgery Faculty of Medicine –Suez Canal University

Faculty of Medicine Ain Shams University 2009

List Of Content

Page	<u>e</u>
AcknowledgementI	
List of abbreviations II	
List of TablesV	
List of FiguresV	I
Introduction and aim of the work	
Review of Literature	
I- Anatomy of Extra-cranial and Intracranial Vascular Disease 4	
II- Pathophysiology of Brain Ischemia	
III- Clinical Syndromes Of Cerebral Ischemia	
IV- Imaging Modalities for Carotid Artery Stenosis	
V- Medical Management of Carotid Artery Disease	
VI- Carotid Artery Stenting (CAS)	
VII- Surgical Treatment	25
Patients and methods	50
Results	58
Discussion	31
Summary	39
References) 4
Arabic summary	

Acknowledgement

First and foremost thanks to **Allah**, most merciful, without his help I would never have been able to complete this work.

I want to express my heart appreciation and deep gratitude to: **Prof./ Mohamed Maged El-Deeb**, Professor of Vascular Surgery, Faculty of Medicine, Ain Shams University, the person who gave me the honor by reading every word written in this thesis. He really helped me by his precious opinions and contributive comments that served much in the construction of this work.

I find no words by which I can express my extreme thankfulness, deep appreciation and profound gratitude to my eminent **Prof./ Mostafa Soliman Abdel-Baki,** Professor of Vascular and General Surgery, Faculty of Medicine, Ain Shams University, for his generous help, guidance, kind

encouragement and great fruitful advice during supervision of this work.

I want to express my profound and sincere thanks to: **Dr./ Wageh Fawzi Abdel-Malek,** Assistant Professor of Vascular Surgery, Faculty of Medicine, Ain Shams University, under his supervision I had the honor to do this work and who devoted so much of his precious time and effort.

Also, I am indebted to: **Dr./ Mohamed Amin El-Sharawi,** Assistant Professor of Vascular Surgery, Faculty of Medicine, Suez Canal University, for his generous supervision, valuable instructions, careful reading and unlimited encouragement throughout the whole work.

Acknowledgement

My sincere thanks and gratitude are due to my Professor, mentor and the great man, who, in spite of not being a direct supervisor of this work, was kind enough to go through every fine detail, guide me and correct my mistakes in order to improve the quality of this thesis.

To **Professor Emad El Din Ahmed Hussein**, Head of Vascular Surgery Unit
at Ain Shams University, who taught me
a lot and gave me a huge amount of his

vast pioneering experience in Endovascular Surgery, as he did with many generations, no words are enough to express my appreciation and deep respect.

Acknowledgement

My sincere thanks and gratitude are due to my Professor, mentor and the great man, who, in spite of not being a direct supervisor of this work, was kind enough to go through every fine detail, guide me and correct my mistakes in order to improve the quality of this thesis.

To **Professor Emad El Din Ahmed Hussein**, Head of Vascular Surgery Unit at Ain Shams University, who taught me a lot and gave me a huge amount of his vast pioneering experience in Endovascular Surgery, as he did with many generations, no words are enough to express my appreciation and deep respect.

I am pleased and honoured to dedicate this work to the Surgery Department at **KFHU**; King Faisal University and all my colleagues in the department.

I feel endebted to **ALLAH** the **ALMIGHTY**, then to my patients whom I tried always to serve to the best of my capabilities . I hope this modest research effort and thesis will be of help to junior colleagues who wish to specialize in Vascular Surgery later on .

List of abbreviations

	T
ACA	: Anterior cerebral artery
ACAS	: Asymptomatic carotid atherosclerosis study
ACC	: American college of cardiology
ACE	: Angiotensin-converting enzyme
ACHA	: Anterior choroidal artery
ACST	: Asymptomatic carotid surgery trial
ACT1	: Asymptomatic carotid stenosis, stenting
	versus endarterectomy
AHA	: American heart association
ARBs	: Angiotensin receptor blockers
ARCHER	: Acculink for revascularization of carotids in
	high-risk surgical patients
ASA	: American stroke association
BEACH	: Boston scientific EPI: a carotid stenting trial
	for high-risk surgical patients
Ca RESS	: Carotid revascularization using
	endarterectomy or stenting systems
CABERNET	: Carotid artery revascularization using the
	boston scientific epifilterative ex and the
	endotex nexstent
CABG	: Coronary artery bypass graft
CAPTURE	: Carotid acculink/accunet post-approval trial
	to uncover rare events
CAS	: Carotid artery stenting
CAS	: Carotid artery stenting
CASANOVA	: Carotid artery stenosis with asymptomatic
	narrowing operation versus aspirin
CAVATAS	: Carotid and vertebral artery transluminal
	angioplasty study
CCA	: Common carotid artery
CEA	: Carotid endarterectomy
CREST	: Carotid revascularization endarterectomyt
	versus stent trial

List of abbreviations (Cont.)

CT	: Computed tomography
CTA	: Computed tomography angiography
CTIAs	: Crescendo transient ischaemic attacks
DSA	: Digital subtraction angiography
DW-RR	: Diffusion-weighted brain MR imaging
ECST	: European carotid surgery trial
EPDs	: Embolic protection devices
EVA-35	: Endarterectomy versus angioplasty in
	patients with symptomatic severe carotid
	stenosis
FEV ₁	: Force expiratory volume in 1 second
GSM	: Gray-scale-median
НОРЕ	: Heart outcomes and prevention evaluation
ICA	: Internal carotid artery
INR	: International normalized ratio
MACE	: Myo-asymptomatic carotid endarterectomy
MAVERIC	: Medtronic AVE self-expanding carotid
	stent system with distal protection in the
	treatment of carotid stenosis
MCA	: Middle cerebral artery
MI	: Myocardial infarction
MIP	: Maximum intensity projection
MPVR	: Multiplaner volume rendering
MRA	: Magnetic resonance angiography
MRI	: Magnetic resonance imaging
NASCET	: North American sytmptomatic carotid
	endarterectomy trial
NCEP	: National cholesterol education program
PCA	: Posterior cerebral artery
PTA	: percutaneous transluminal angioplasty
PW-MR	: Perfusion-weighted brain MR imaging
RIND	: Revesible ischemic neurological deficit

List of abbreviations (Cont.)

: Stenting and angioplasty with protection in
patients at high risk for endarterectomy
: Registry study to evaluate the neuroshield
bare wire cerebral protection system and X-
act stent in patient at high risk for carotid
endarterectomy
: Stroke-in-evolution
: Stent-supported percutaneous angioplasty
of the carotid artery versus endarterectomy
: Stroke prevention with aggressive reduction
of cholesterol levels
: Stroke prevention in reversible ischemia
trial
: Transatlantic asymptomatic carotid
intervention trial
: Trans-cranial Doppler
: Transient ischemic attack
: Tissue plasminogen activator
: Veterans affairs high density lipoprotein
: Warfarin aspirin recurrent stroke study

List of Tables

	<u>Page</u>
Table 1: Diagnostic criteria for Doppler diagnosis of stenosis of 50% and 70% (Robison et al., 1988)	76
Table 2: Criteria for high risk carotid endarterectomy	. 167
Table 3: CCS functional classification of angina (Caroline et al., 2006)	. 168
Table 4: Showing the age and sex in relation to the number of cases	. 173
Table 5: Showing the risk factors in relation to the number of cases and sex.	. 174
Table 6: Showing high-risk criteria in relation the number of cases	. 175
Table 7: Showing the degree of stenosis by duplex in relation to the number of cases.	. 176
Table 8: Showing the site of stenosis by duplex in relation to the number of cases.	. 176
Table 9: Showing classes of angina according to CCS in relation to the number of cases.	. 178
Table 10: Showing different operative techniques in relation to the number of cases.	. 179
Table 11: Showing the type of incidence of complication in relation to the type of operation.	. 180
Table 12: Showing the incidence of complication in relation to diabetes mellitus.	. 181
Table 13: Showing incidence of complications in relation to hypertension.	. 182
Table 14: Showing the incidence of complications in relation to the smoking.	. 182
Table 15: Showing the incidence of complications in relation to the hyper lipidemia	. 183
Table 16: Showing 30-days events.	. 184
Table 17: Showing one year events	. 184

List of Figures

	Page
Figure 1: Branches of Aortic Arch	5
Figure 2: Types of aortic arch	7
Figure 3: Nerves that may be encountered or injured during	
carotid endarterectomy and their typical relationship to	
the carotid arterial system	14
Figure 4: The ICA and its branches	16
Figure 5: The Circulus Arteriosus (of Willis)	18
Figure 6: Pathogenesis atherosclerosis.	
Figure 7: A) Relative low shear stress is present along the lateral	
portion of the carotid bifurcation, which predisposes to	
atherosclerotic plaque development. B) The low shear	
stress can also result in transient reversal of blood flow	
during cardiac cycle, which further predisposes carotid	
lesion formation	51
Figure 8: Duplex study of ICA (Direct measurement)	74
Figure 9: Duplex study of ICA (Diagnostic criteria for Doppler	
diagnosis of stenosis)	77
Figure 10: Carotid Angiogram – Note the tight stenosis at origin	
of ICA indicated by arrow	89
Figure 11: ECST European Carotid Surgery Trial; NASCET	
North American Symptomatic Carotid Endarterectomy	
Trial; and CC common carotid	91
Figure 12: Showing tight stenosis of left ICA with ulcer	94
Figure 13: Standard incision along the anterior border of the	
sternocleidomastoid (SCM) muscle	. 149
Figure 14: Carotid Endarterectomy Operation.	. 154
Figure 15: Eversion carotid endarterectomy	
Figure 16: Carotid shunting.	. 157
Figure 17: Showing risk factors in relation to the number of cases	
and sex.	. 174

Introduction

It has been proved through various trials since 1950 that carotid endarterectomy is more effective than medical management in the prevention of stroke in patients with severe atherosclerotic carotid artery stenosis. Stroke is a devastating complication of coronary artery bypass surgery. It increases the mortality and morbidity of the operation and prolongs the length of hospital stay (*Taylor and Bell*, 2004).

The asymptomatic carotid atherosclerosis study (ACAS), on American trial, and large European based asymptomatic carotid surgery trial (ACST), showed a benefit in those patients undergoing carotid endarterectomy (CEA) with >60% stenosis compared to the medically treated group. The estimated 5-year risk of ipsilateral stroke or any stroke or death was 11% in the medical group and 5.1% in the surgical group (*Shearman and Simon*, 2001).

CEA can be safely performed in patients deemed at high risk, including those aged 80 years or older and others with significant comorbid conditions, with combined stroke and mortality rates comparable to those found in randomized trials, i.e., the asymptomatic carotid atherosclerosis study and North American symptomatic carotid endarterectomy trial (*Reed et al.*, 2003).

Introduction & Aim of The Work

Patients undergoing coronary artery bypass grafting (CABG) have a stroke risk due to a number of factors including embolisation of atheroma from aortic arch and problems associated with extra-corporeal bypass. The concurrent CEA and CABG can be performed with acceptable operative mortality and morbidity, and good long-term freedom from coronary and neurologic events (*Koll et al.*, 2006).

The management of these patients need careful pre-intraand post-operative assessment and timing aimed at reducing the ischemic injuries, both cerebral and cardiac. Therefore, we believe that surgical technique should be individualized for each patient (*Chiappini et al.*, 2005).