RESTORATION AND MANAGEMENT OF THE ECOSYSTEM SERVICES OF BURULLUS LAKE - EGYPT

Submitted by Noha Samy Sayed Mahmoud

B.Sc. Civil Engineering, Faculty of Engineering, Ain Shams University, 2003 Diploma in Environmental Sciences, Institute of Environmental Studies & Research, Ain Shams University, 2013

A thesis submitted in Partial Fulfillment
Of
The Requirement for the Master Degree
In
Environmental Engineering Sciences

Department of Environmental Engineering Sciences
Institute of Environmental Studies and Research
Ain Shams University

APPROVAL SHEET

RESTORATION AND MANAGEMENT OF THE ECOSYSTEM SERVICES OF BURULLUS LAKE - EGYPT Submitted by Noha Samy Sayed Mahmoud

B.Sc. Civil Engineering, Faculty of Engineering, Ain Shams University, 2003 Diploma in Environmental Sciences, Institute of Environmental Studies & Research, Ain Shams University, 2013

A thesis submitted in Partial Fulfillment

Of

The Requirement for the Master Degree

In

Environmental Engineering Sciences
Department of Environmental Engineering Sciences

This Thesis Towards a Master Degree in Environmental Science Has been Approved by:

Name Signature

1. Prof. Dr. Magdy Tawfik Khalil

Prof. of Aquatic Ecology – Department of Zoology Faculty of Science Ain Shams University

2. Prof. Dr. Iman Mahmoud El-Azizy

Professor Hydraulics – Department of Hydraulics and Irrigation Faculty of Engineering
Ain Shams University

3. Prof. Dr. Aly Nabih El-Bahrawy

Prof. of Hydraulics – Department of Hydraulics and Irrigation Faculty of Engineering Ain Shams University

4. Prof. Dr. Noha Samir Donia

Prof. and Head of Department of Environmental Engineering Sciences Institute of Environmental Studies and Research Ain Shams University

5. Dr. Mohamed Abd El-Moneam Farouk

Head of the Central Department of Integrated Coastal Zone Management EEAA

RESTORATION AND MANAGEMENT OF THE ECOSYSTEM SERVICES OF BURULLUS LAKE - EGYPT

Submitted by Noha Samy Sayed Mahmoud

B.Sc. Civil Engineering, Faculty of Engineering, Ain Shams University, 2003 Diploma in Environmental Sciences, Institute of Environmental Studies & Research, Ain Shams University, 2013

A thesis Submitted in Partial Fulfillment

Of

The Requirement for the Master Degree

In

Environmental Sciences
Department of Environmental Engineering Sciences

Under The Supervision of:

1. Prof. Dr. Aly Nabih El-Bahrawy

Prof. of Hydraulics – Department of Hydraulics and Irrigation Faculty of Engineering Ain Shams University

2. Prof. Dr. Noha Samir Donia

Prof. and Head of Department of Environmental Engineering Sciences Institute of Environmental Studies and Research Ain Shams University

3. Dr. Mohamed Abd El-Moneam Farouk

Head of the Central Department of Integrated Coastal Zone Management EEAA

ACKNOWLEDGMENT

First of all, I would like to thank almighty Allah for his endless Grace and Blessing on me to fulfill this study.

I am greatly indebted to **Prof. Dr. Aly El-Bahrawy – Professor of Hydraulics – Faculty of Engineering – Ain Shams University**. He has been a tremendous mentor for me. I would like to thank him not only for his keen interest and fruitful support, but also for his continuous encouragement.

I am deeply grateful to **Prof. Dr. Noha Donia - Professor and Head of Environmental Engineering Department – Institute of Environmental Research and Science**, for her kind supervision on this thesis, patience, helpful, valuable support and time, tolerance and the facilities provided throughout the different stages of the work.

Special thanks to **Dr. Mohamed Abd El-Moneam Farouk - Head of The Environmental Management Sector - EEAA**, for his valuable supervision, patience, excellent advice and guidance, support and continuous encouragement toward successful completion of this thesis.

I like to express my warmest gratitude to **Prof. Dr. Iman Mahmoud El-Azizy** – **Professor of Hydraulic - Faculty of Engineering – Ain Shams University**, for her continuous support and encouragement.

I wish to express my deepest appreciation to **Prof. Dr. Magdy T. Khalil** – **Professor of Aquatic Ecology - Faculty of Science** – **Ain Shams University**, for his generous and continuous professional assistance.

This work could not have been completed without the keen interest and support provided by **Dr. Hanan Farag - Associate Professor**.

I would like to thank **Chm. Fayed El Shamly**, **Burullus Protectorate Director – EEAA**, for his kind support and advice during this work.

Special thanks for my boss Chm. Ahmed Sheta – Head of The Central Department of ICZM – EEAA, for his continues advice.

I would like to send deep appreciation to my dearest friends Eng. Amira Iprahim, Chm. Maha Moawed, Dr. Shimaa Abbas and Eng. Yosra Abd El-Aziz, for their kind support and continuous encouragement.

ACKNOWLEDGMENT

Finally, there are no words could express my thanks to my beloved family for their support and encouragement and I would like to dedicate this work to all of them and specially my lovely daughter **Nour**.

ABSTRACT

Burullus wetland is the second-largest Egyptian Northern lagoons, located in the central part of the Nile Delta. It comprises one of the most unique and productive habitats in the Mediterranean region and plays an important breeding and sheltering role for many wildlife, water birds and plant species, including number of rare and threatened species. Thus, the wetland was declared as a nature reserve under the international Ramsar convention, important bird area (IBA). Besides, the wetland is considered a part of a national protectorate that was declared in 1998.

This study focuses on the wetland and its five districts, as it offers various ecosystem services including provisional, regulating, supporting and recreational, supporting income and livelihood of local communities surrounding the wetland.

However, the wetland is recently under pressure of several socio-economic drivers including rapid population growth, unplanned urbanization and a conflict of various economic activities around the wetland as; fishing, aquaculture, agriculture, salt extraction, bird hunting and reed harvesting, in addition to climate change threats. Such drivers are posing serious implication on the wetland ecosystem, affecting directly and/ or indirectly its health and productivity. Thus, distressing local communities who rely on its services to support their income and livelihood.

This thesis aims to develop and test integrated tools for assessment, valuation and management of Burullus wetland, applying recent international approaches for valuation and wise use of wetlands ecosystem services. Several field visits was conducted to a number of selected villages of the districts surrounding Burullus wetland for direct communicating with relevant stakeholders, local communities and different targeted groups. Socioeconomic and gender analysis data were collected using designed questionnaires, to identify main ecosystem services and goods provided by Burullus wetland that have direct and indirect influence on the household income of local communities. Direct and indirect economic valuation of provisioning ecosystem services (fishing – agriculture – reed harvesting – salt extraction - bird hunting), through estimation of the total cost for each activity (capital - operational – labors fees) and their direct return through a specified questionnaires for each services.

Gender equity was one of the main target of this thesis, where interviews have been conducted with women and children in selected villages with a detail analysis of the main reasons of weak participation of women in economic activities.

Allocation model has been prepared for maximizing the total return of selected provisional activities and main crops in the agricultural area. DPSIR framework was applied for identifying main pressures resulted from the current drivers and its impact on the efficiency of the wetland ecosystem services. Finally, management and restoration plan was prepared as responses needed to mitigate negative impacts exerted on the wetland ecosystem services from current anthropogenic drivers.

The results of this thesis are recommended to be adopted by relevant stakeholders as a model to guide decision makers in managing and restoring other Egyptian Northern wetlands.

TABLE OF CONTENT

ACKNOWLEDGMENT	I
ABSTRACT	III
TABLE OF CONTENT	V
LIST OF FIGURES	IX
LIST OF FIGURES	X
LIST OF TABLES	XI
LIST OF EQUATIONS	XII
LIST OF ABBREVIATIONS	XIII
1. CHAPTER (1) INTRODUCTION	
1.1 Background	1
1.2 Problem Statement	4
1.3 Study Objectives	4
1.4 Work Plan	5
1.5 Methodology	6
1.6 Thesis Structure	6
2. CHAPTER (2) LITERATURE REVIEW	
2.1 Wetland Ecosystem Services	8
2.2 Valuation of Wetland's Ecosystem Services	10
2.2.1 Revealed Preference Approaches	11
2.2.2 Stated Preference Approaches	16
2.3 Egyptian Northern Wetlands – Case Study Burullus W	etland.17
2.3.2 Challenges Facing Burullus Wetland	19
2.3.3 Land Use/ Land Cover Change	20
2.3.4 Linear Programming Models	20
2.3.5 DPSIR Framework	21
2.3.6 Management Plan of Burullus Wetland	23
3. CHAPTER (3) STUDY AREA DESCRIPTION / DATA ANA	LYSIS
3.1 Geographical Location	24
3.3 Social Representation	25
3.4 Water Resources	26

	3.5 Water Quality	28
	3.6 Land Use/ Land Cover	31
	3.7 Ecosystem Services	33
	3.7.1 Provisional Ecosystem Services	33
	3.7.1.1 Fishing	33
	3.7.1.2 Aquaculture	34
	3.7.1.3 Agriculture	35
	3.7.1.4 Economic plants	36
	3.7.1.5 Livestock Breeding	38
	3.7.1.6 Illegal Hunting of Water Birds	38
	3.7.1.7 Extractive Activities	39
	3.7.1.8 Industrial Activities	40
	3.7.2 Recreational Ecosystem Services	40
	3.7.3 Regulating and Supporting Ecosystem Services	
	3.8 Laws and Legislations	42
	3.8.1 Main Regulating Conventions	42
	3.9 Relevant Stakeholders	44
	3.9.1 Primary Stakeholders	44
	3.9.2 Secondary Stakeholders	44
	3.9.3 Key Stakeholders	45
	3.10 Main Challenges	47
	3.10.1 Environmental Challenges	47
	3.10.2 Institutional Challenges	
4	. CHAPTER (4) MATERIALS AND METHODS	
	4.1 Field Survey and Questionnaires Design	51
	4.1.1 Questionnaires Objective	51
	4.1.2 Geographical Plan	52
	4.1.3 Type of Collected Data	53
	4.1.5 Data Analysis Process	53
	4.1.4 Questionnaires Group Questions	54
	4.2 Economic Valuation of Ecosystem Services	55

4.3 Socio-economic Indicators	57
4.4 Linear Programming	57
4.4.1 Allocation of Ecosystem Services	57
4.4.2 Allocation of Crop Patterns	58
4.5 DPSIR Framework	58
5. CHAPTER (5) RESULTS AND DISCCUSSION	
5.1 Questionnaire Analysis	60
5.1.1 Questionnaire Group I - Socio-economic Analysis	60
5.1.2 Questionnaire Group II - Gender and Equity Analysis	73
5.1.3 Questionnaire Group III - Valuation of Provisional Service	es.77
5.2 DPSIR Analysis	92
5.2.1 Socio-Economic Drivers	92
5.2.2 Main Environmental Pressures	93
5.2.3 State Change and Impact	93
5.2.4 Responses Analysis	98
5.3 Allocation Modeling	104
5.3.1 Land Use Allocation Modeling	104
5.3.2 Allocation of Cropping Pattern in Kafr El-Sheikh	107
6. CHAPTER (6) MANAGMENET AND RESTORATION PLAN	
6.1 Recent Management Approaches	111
6.1.1 Regular Monitoring Program	111
6.1.2 National Protocol of "Rehabilitation of Egyptian Lakes".	112
6.1.3 Technical Committee for "Saving Egyptian Lakes"	112
6.2 Recent Implemented Projects	112
6.2.1 Ongoing Dredging Project	113
6.2.2 Coastal Protection Project	113
6.2.3 Adaptation of Climate Change in Nile Delta Project	113
6.2.4 Sea Level Rise Protective work	114
6.3 Proposed Management and Restoration Plan	115
6.3.1 Vision	115
6.3.2 Main Issues	115

6.3.3 SWOT Analysis	115
6.3.4 Strategic Goal and Objectives	117
6.3.5 Suggested Actions	118
6.3.6 Expected Outcomes	121
6.3.7 Achievement Indicators	122
CHAPTER (7) CONCLUSIONS AND RECOMMENDATION	\mathbf{S}
7.1 Main Conclusions	123
7.2 Main Recommendations	126
SUMMARY	128
REFERENCES	130
APPENDICES	137
المستخلص	i
الملخص	ii

LIST OF FIGURES

Figure 1-1 Location of Burullus wetland in Nile Delta	2
Figure 1-2 Assessing and valuating ecosystem services of Burullus wetland	d 6
Figure 2-1 Schematic representation of ecosystem services	9
Figure 2-2 Revealed/ Stated Preference Approaches	11
Figure 2-3 DPSIR framework chain	22
Figure 3-1 Administrative districts surrounding Burullus wetland	24
Figure 3-2 Location of monitoring stations – EEAA	28
Figure 3-3 Land cover classification in Burullus wetland 2011	32
Figure 3-4 Change of LU/LC from 1998 to 2015	32
Figure 3-5 RS images of 1984 and 2015 respectively of LU/LC	33
Figure 3-6 Quantity of different fish species in Burullus wetland	34
Figure 3-7 Governmental fish farms in Kafr El-Sheikh	35
Figure 3-8 Private fish farms in Kafr El-Sheikh	35
Figure 3-9 Agricultural area in the five districts surrounding the wetland	36
Figure 3-10 Packages of reed beds in villages around Burullus wetland	37
Figure 3-11 Percentage of livestock in Kafr El-Sheikh Governorate	38
Figure 4-1 Field work selected villages	53
Figure 4-2 Field work pictures	56
Figure 4-3 DPSIR framework chain	
Figure 5-1 Ranking of Burullus wetland activities	60
Figure 5-2 Reasons of decreasing family income in Baltim district	61
Figure 5-3 Reasons of decreasing family income d in Sidi Salem district	61
Figure 5-4 Reasons of increasing family income in Baltim district	62
Figure 5-5 Reasons of environmental change in Baltim district	62
Figure 5-6 Reasons of wetland change in Sidi Salem district	63
Figure 5-7 Changes in ecosystem services in Baltim district	63
Figure 5-8 Profitable Activities in Baltim district	64
Figure 5-9 Ecosystem services in Sidi Salem district	64
Figure 5-10 New profitable activities in Baltim district	64
Figure 5-11 New profitable activities in Sidi Salem district	65
Figure 5-12 Reasons prevent getting favorable prices in Baltim district	65
Figure 5-13 Reasons prevent getting favorable prices in Sidi Salem district	66
Figure 5-14 Credit change over last ten years in Sidi Salem district	66
Figure 5-15 Marketing in Baltim district	
Figure 5-16 Places for selling fish in Sidi Salem district	67
Figure 5-17 Sources of learning fishing in Sidi Salem district	67
Figure 5-18 Main information in Sidi Salem district	
Figure 5-19 Members of organization in Sidi Salem district	68

LIST OF FIGURES

Figure 5-20 Major social problems in Baltim district	. 69
Figure 5-21 Major social problems in Sidi Salem district	. 69
Figure 5-22 Suggested solutions for future plans in Baltim districts	. 69
Figure 5-23 Suggested solutions for future plans in Sidi Salem district	. 70
Figure 5-24 Problems of wetland in Baltim district	. 70
Figure 5-25 Problems of wetland in Sidi Salem district	. 71
Figure 5-26 Problems facing household in Sidi Salem district	. 71
Figure 5-27 Solutions to change life in Sidi Salem	. 71
Figure 5-28 Livelihood activities women are not permitted in Sidi Salem	. 74
Figure 5-29 Women activities in Baltim district	. 75
Figure 5-30 Daily women activities in Sidi Salem	. 75
Figure 5-31 Pictures of fish trading in front of the wetland	. 78
Figure 5-32 Methods of fish marketing and distribution	. 81
Figure 5-33 Reasons of changing fish productivity (Quantity/ Quality)	. 82
Figure 5-34 Crop net profit in Kafr El-Sheikh governorate	. 85
Figure 5-35 Reed bundles Figure 5-36 Reed packages	. 90
Figure 5-37 Total cost and return for each selected services	. 92
Figure 5-38 Change in the wetland size (Hossena & Negm, 2016)	. 94
Figure 5-39 Total agriculture area in each district	. 95
Figure 5-40 Annual trend of fish production in Burullus wetland (ton)	. 95
Figure 5-41 Percentage of fish production per type	. 96
Figure 5-42 Annual production of Argyrosomus regius (ton)	. 96
Figure 5-43 Annual production of crap in Burullus wetland (ton)	. 97
Figure 5-44 Aquaculture area within the protectorate area	. 97
Figure 5-45 Driver one – Agricultural and industrial expansion	. 99
Figure 5-46 Driver two – Aquaculture development	100
Figure 5-47 Driver three – Population growth	101
Figure 5-48 Driver four – Climate change	102
Figure 5-49 Driver five – Stakeholde's interest	103
Figure 5-50 Representation of ecosystem services in Burullus wetland	104
Figure 5-51 Spreadsheet model developed to allocate ecosystem services.	105
Figure 5-52 Representing objective function in the Model	106
Figure 5-53 Solution found by Excel Solver	106
Figure 5-54 A spreadsheet model is developed to allocate crop pattern	108
Figure 5-55 Solver window	109
Figure 5-56 Allocation solution of cropping pattern	110
Figure 6-1 Ongoing dredging project in Burullus wetland	113
Figure 6-2 Sand traps as part of the pilot project	114
Figure 6-3 Adaptive Management Cycle (Ramsar, 2002)	122

LIST OF TABLES

Table 2-1 Total Economic Value (MA, 2005)	. 10
Table 2-2 Advantages and disadvantages of market price method	. 12
Table 2-3 Advantages and disadvantages of productivity method	. 13
Table 2-4 Advantages and disadvantages of hedonic price method	. 14
Table 2-5 Advantages and disadvantages of cost price method	. 15
Table 2-6 Advantages/ disadvantages of contingent method	. 16
Table 3-1 Population distribution in each district	. 26
Table 3-2 Type of water discharging into the wetland	. 27
Table 3-3 Monitoring stations of Burullus wetland – EEAA	. 28
Table 3-4 Water quality properties—EEAA monitoring program May 2017	29
Table 3-5 Number of Regional and International conventions	. 42
Table 3-6 Number of laws regulating activities and waste disposals	. 43
Table 3-7 Stakeholders categorization (IUCN, 2014)	. 44
Table 3-8 Primary stakeholders	. 44
Table 3-9 Secondary stakeholders	. 45
Table 3-10 Key stakeholders	. 46
Table 3-11 Main challenges affecting the wetland	. 47
Table 4-1 Selected villages in each district	. 52
Table 4-2 Group of questions in socio-economic and gender questionnaires	s54
Table 4-3 Ecosystem services provided by Burullus wetland	. 55
Table 4-4 Applied formulas for valuating provisoinal services	. 56
Table 5-1 Activities dominated by each gender	. 76
Table 5-2 Total fishing cost	. 79
Table 5-3 Actual and desired prices for each fish type	. 80
Table 5-4 Aquaculture feasibility study (LE)	. 83
Table 5-5 Total cost and benefit through five years life time project	. 84
Table 5-6 Cost estimated for agriculture activity (CAPMAS 2015)	. 86
Table 5-7 Expected selling and retail prices for main crops	. 87
Table 5-8 Water requirement for each crop	
Table 5-9 Four species mainly hunted by local communities	
Table 5-10 Cost analysis of bird hunting activity	
Table 5-11 Main cost items for valuating Reed harvesting	
Table 5-12 Salt extraction cost analysis	

LIST OF EQUATIONS

Equation 4-1 Population density/admin district	52
Equation 5-1 Fishing Return Equation	81
Equation 5-2 Bird Hunting Equation	88
Equation 5-3 Reed Harvesting Equation	91
Equation 5-4 Salt Extraction Equation	91