METHODS OF RECONSTRUCTION OF ACETABULAR DEFECTS IN TOTAL HIP REPLACEMENT

ESSAY

Submitted for fulfillment of the master degree in **Orthopaedics Surgery**

By

Mohamed Eissa Hassan

(M.B.B.Ch)

Supervisors

Prof. Dr. Ahmed Samy Kamel

Professor of Orthopaedic Surgery

Faculty of Medicine - Ain Shams University

Dr. Haytham Abdelazim

Lecturer of Orthopaedic Surgery
Faculty of Medicine - Ain Shams University

Faculty of Medicine Ain shams University 2015

وقُلِ اعْمَلُوا فَسَيَرَى اللهُ عَمَلَكُمْ وَقُلِ اعْمَلُوا فَسَيَرَى اللهُ عَمَلَكُمْ ورَسُولُهُ والْمُؤْمِنُونَ

صدق الله العظيم سورة التوية آية (105)

First, thanks are all due to Allah for Blessing this work until it has reached its end, as a part of his generous help throughout our life.

I would like to express my deep gratitude and sincere thanks to **Prof. Dr. Ahmed Samy Kamel**, professor Of Orthopaedic surgery, Faculty of Medicine, Ain shams University and nothing would be too much for what he had actually done through his wise guidance. It was an honor for me to be under his supervision.

I would like also to offer my most grateful thanks to **Dr.Haytham Abd Elazim**, Lecture of orthopaedic, Faculty of medicine Ain shams university for his assistance and great help, without which this work would have ever been completed.

Finally, I am grateful and deeply indebted to my family, my fiancée and for every person who by way or another helped during this work.

Mohamed Fissa

List of Contents

	Page
Acknowledgment	
List of Abbreviations	i
List of Figures	iii
List of Tables	

Introduction	1
Aim of the Work	6
Review of Literature	7
Chapter one:	
Applied surgical anatomy of the acetabulum	7
Column concept of the acetabulum	7
Posterior column	10
Anterior column	10
Iliac segment	10
Acetabular segment	11
Pubic segment	12
Vascular supply	13
Chapter two:	
Pathological anatomy and classifications	17
Introduction	17
Classification systems:	18
-The AAOS classification system	18
-Chandler and Penenberg classification system	21
-Engh and colleagues classification system	23
-Gross and associates classification system	24
-Paprosky and associates classification system	26
-Other acetabular classification systems	32
Chapter three:	
Preoperative and intraoperative assessment	35
Introduction	35
Preoperative evaluation	35
Radiographic evaluation	35
List of Contents (Cont.)	
• • • • • • • • • • • • • • • • • • • •	age
Acetabular orientation	41
Center of rotation	42
Intraoperative bone stock assessment	45

Chapter four:

Methods of acetabular reconstruction in total	
hip replacement	47
Introduction	47
Principles of bone grafting	48
Autogenous grafts	49
Allograft	51
Morcellized bone graft	51
Structural bone graft	52
Management of defects:	54
1-According to AAOS classification:	54
2-Accourding to Paprosky classification:	55
Hardware used in acetabular reconstruction:	64
Press-fitted porous-coated implants	65
Oblong acetabular components	66
Reconstruction cages (Antiprotrusio rings)	67
KerBoull's plate	69
Octopus ring	70
Ganz reinforcement ring	72
Trabecular metal	73
Postoperative management of acetabular reconstruction	
in total hip replacement	80
Summary and Conclusion	82
References	84
Arabic summary	

List of Abbreviations

AAOS : Academy of Orthopaedic Surgeons

AP : Anteroposterior

APC : Anti-protrusio cage

CDH : Congenital dysplasia of the hip

CT : Computerized tomography

IGA : Inferior gluteal artery

LT : Ligamentum teres

OBT : Obturator artery

SGA : Superior gluteal artery

THA : Total hip arthroplasty

THR : Total hip replacement

TM : Trabecular metal

UHMWPE: Ultrahigh molecular weight polethylene

List of Tables

Table	Title	Page
(1)	AAOS classification for acetabular	20
	deficiency	
(2)	Chandler and Penenberg acetabular bone	23
	deficiency classification	
(3)	Engh and Glassman acetabular deficiency	24
	classification	
(4)	Gross and associates acetabular defect	25
	classification	
(5)	Paprosky acetabular defect classification	28
(6)	D' Antonio grading system of severity of	34
	acetabular bone loss	

List of Figures

Fig.	Title	Page
(1a)	External surface of the right hip bone	8
(1b)	Internal surface of the right hip bone	9
(2)	A: An extrapelvic view of the pelvic bone	12
	demonstrating the anterior and posterior	
	columns. B: An intrapelvic view of the pelvic	
	bone demonstrating the anterior and posterior	
	columns	
(3)	The course of the extrapelvic vessels in	14
	relationship to the osseous pelvis	
(4)	The course of the intrapelvic vessels in	15
	relationship to the osseous pelvis	
(5)	Type I acetabular segmental defect	20
(6)	Type II acetabular cavitary defect	20
(7)	Type III acetabular defect	21
(8)	Type I defect	29
(9)	Type IIA defect	29
(10)	Type IIB defect	30
(11)	Type IIC defect	30
(12)	Type IIIA defect	31
(13)	Type IIIB defect	31
(14)	Line representation of AP radiographic	37
	anatomy of the hip	
(15)	Kohler's line	39
(16)	Modified acetabular index for adults	39
(17a)	A method for locating the center of rotation	44
(17b)	Ranawat method for locating the center of	44
	rotation	

List of Figures (Cont.)

Fig.	Title	Page
(18)	Intra operative assessment of bone loss	46
(19)	Algorithm for acetabular reconstruction	54
(20)	Type I defect	56
(21)	Type IIA defect	57
(22)	Type-IIA segmental defects	58
(23)	Type IIB defect	59
(24)	Type IIC defect	61
(25)	Acetabular implants :	62
	-(Left) Jumbo porous coated cup	
	-(Right) Antiprotrusio cage	
(26)	Type IIIA defect	63
(27)	Type IIIB defect	63
(28)	Specialized acetabular components	67
(29)	Burch-Schneider cage	68
(30)	Muller ring	69
(31)	GAP rings	69
(32)	The peripheral metallic frame of octopus ring	71
(33)	The octopus ring	71
(34)	The Ganz reinforcement ring	73
(35)	Open cell porous tantalum	74
(36)	Multiple orthopaedic application of porous	75
	tantalum.	
(37)	TM Monoblock acetabular component	76
(38)	Trabecular metal shell and augment	77
(39)	Modular acetabular component with porous	78
	tantalum coating	
(40)	Trabecular metal cup cage	79

Introduction

Total hip arthroplasty has dominated orthopedic surgery for the past 15 years. The demand for hip arthroplasty continues unabated, and with a population that has increasing proportion of older people, it increases further⁽¹⁾.

Acetabular bone deficiency can present a challenge during total hip arthroplasty. Bone deficiency in the acetabulum can be encountered in primary and revision acetabular reconstruction. Primary deficiencies result from either an abnormality of growth or a condition that alters the shape of the acetabulum as acetabular dysplasia in congenital dislocation of the hip.

All types of acetabular deficiencies can be divided into segmental or cavitary. A segmental deficiency is a complete loss of bone in the supporting rim of the acetabulum, including medial wall. A cavitary deficiency is a volumetric loss in bony substance of the acetabular cavity (2).

Bone deficiencies encountered during revision arthroplasty continue to be the most common and are seen with multiple revisions, aseptic loosening and component migration, infection, osteolysis, and iatrogenic causes (2).

Acetabular defects are classified according to the system of the American Academy of Orthopaedic Surgeons (AAOS) Committee into:

- Type I Segmental: medial wall defects, or peripheral rim defects.
- Type II Cavitary: defects contained within ileum, ischium or pubis; may include 50% defect in medial wall.

☐ Introduction and Aim of The Work

- Type III Combined: segmental and cavitary defects occurring together.
- Type IV Pelvic discontinuity: complete mechanical discontinuity of the pelvis through the acetabulum due to fracture of anterior and posterior columns, with separation of the superior and inferior portions of the acetabulum (2).

Contained (cavitary) defects are more easily dealt with because the skeleton, while weakened, is basically intact. Cavitary defect of the acetabulum is one in which the anterior and posterior columns and the peripheral supporting bone for the acetabular component are intact.

Pelvis with a cavitary defect can support an implant with a little help. This help may be biological (in the form of a bone graft) or it may involve modification of the implant. Impaction grafting with use of morseled bone is a biological alternative ⁽³⁾.

Large cups and asymmetrical cups that are designed to make contact with host bone, with minimum or no use of morcellized bone, are examples of modified implants that may be used to treat a cavitary defect ⁽⁴⁾.

Uncontained (segmental) defects are more of a challenge. Small and even moderate defects can be dealt with by placing the implant against host bone without structural grafting but perhaps with some compromise of the normal anatomical relationships.

Placement of a cup in a high hip-center position without cement allows the cup to make contact with host bone, thereby facilitating biological fixation by bone ingrowth ⁽⁵⁾.

Introduction and Aim of The Work

If the patient has a large segmental defect and there is no possibility of placing the implant against host bone or of restoring nearly normal anatomy, then the use of a structural bone graft may be indicated. This technique, if successful, restores bone stock and anatomical relationships and, if failure occurs, the revision operation may be less challenging⁽⁶⁾.

Radiographic features include a visible fracture line through the pelvis or columnar lines, translation or rotation of the inferior hemipelvis relative to the superior hemipelvis, violation of Kohler's line, and superior migration of the center of rotation of the femoral head. Adequate exposure of the acetabulum and verification of columnar integrity before attempting fixation of the acetabular component allows the surgeon to recognize these defects. For cases with more than 50% host bone remaining, rigid plate fixation of the discontinuity, followed by cementless socket fixation. For those cases with less than 50% host bone, rigid plate fixation or antiprotrusio cage placement and cemented socket combination is acceptable ⁽⁷⁾.

Methods of reconstruction

A- Bone-Grafting:

The spectrum of opinion regarding the treatment of bone defects on the acetabular side of an arthroplasty has ranged from recommendations to avoid the use of bone graft if possible to suggestions that morcellized bone only or complex structural grafts be used⁽⁸⁾

B-Hardware used in Acetabular Reconstruction

1) Press-fitted Porous-coated Implant

It is possible and often preferred to press fit a porouscoated implant in a type III defect with less than 70% of the host bone left, but it does involve some difficulty. It's recommended to use a structural allograft to reconstruct the deficient rim or column. This aids in maintaining the position and promotes fixation of the acetabular component to the host bone. A structural graft should be used to reconstruct the segmental defects using hemiacetabular or total acetabular allografts with restoration of the hip center of rotation. Reports have shown that if less than 50% of the host acetabulum remains, attempts at obtaining fixation with a porous-coated implant will yield high failure rates⁽⁹⁾

2) Oblong Acetabular Components:

Oblong acetabular component were introduced for management of large superior acetabular defects. Their theoretical advantages include avoiding the high hip center and the use of bulk allograft for support. They are designed to maintain contact with host bone and to restore a more anatomic hip center. Intermediate-term results have been excellent in small series with non custom, oblong porous cups. It's recommended only when the long axis of the socket is smaller than the anteroposterior diameter ⁽¹⁰⁾

3) Reconstruction Cages (Antiprotrusio rings):

The Burch-Schneider acetabular support is cup-shaped with a superior wing and inferior tongue for fixation in the ilium and ischium respectively. It is supplied in the right and left implants. The superior wing designed to rest against the ilium to which it is fixed with cancellous screws. The inferior tongue should be impacted into the ischium (10).

4) KerBoull's Plate:

It allows automatic centering of the cup by means of hook placed at the obturator foramen and by stabilizing the lower part of the acetabulum using bone screws connecting

☐ Introduction and Aim of The Work

the upper leg to the iliac ring. To achieve its objective certain conditions must be fulfilled $^{(10)}$.

5) Octopus ring:

It is a modular system comprising three component the first is peripheral metallic fram manufactured from pure titanium to ensure malleability. It is supplied in right and left frames. It includes three fixed lugs, a straight superior iliac lug plated at 45 degrees to the ring plane. The second is a T-shaped posterior iliac lug plated at 90 degrees to the ring plane. The third is a hook shaped lug for hooking onto the obturator foramen⁽¹⁰⁾

6) Ganz reinforcement ring:

It's a titanium ring available in sizes ranging from 38 to 64 mm and is generally combined with a polyethylene cup that is 2 to 4 mm smaller. (11)

Aim of The Work

The aim of this work is to review the literature regarding different modalities used in acetabular reconstruction in both primary and revision hip arthroplasty. This is through reviewing of the surgical anatomy of the acetabulum, preoperative planning, different sources of bone graft, and regimen of the postoperative rehabilitation.