THYROID FUNCTIONS AND THYROID ANTIBODIES

IN DIABETES MELLITUS

Thesis Submitted

to

Biochemistry Department Faculty of Science Ain Shams University

For the Award of the Ph. D. Degree

By

Tahany Mohamed Abd El-Moneam

M.sc. of Biochemistry 1987 Supervised by

Prof. Dr. Nadia Mohamed Abdallah

Professor and Head of Biochemistry Department Faculty of Science - Ain Shams University

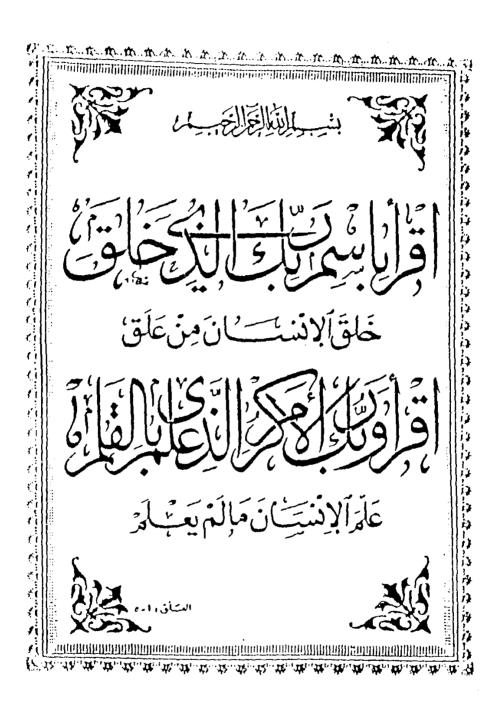
Prof. Dr Hussein El-Sayed El Damasy

Professor of Internal Medicine and Endocrinology

Faculty of Medicine - Ain Shams University

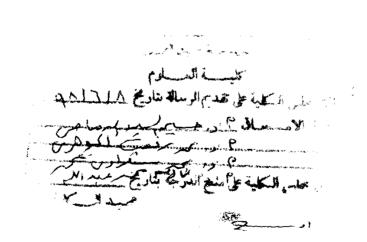
574.192

Dr. Baher Aly Massaod


Lecturer of Internal Medicine and Endocrinology Faculty of Medicine - Ain Shams University

Faculty of Science Ain Shams University

1998



I declare that this Thesis has been composed by myself and that the work of which it is a record has been done by myself. It has not been submitted for a degree at this or any other university

Tahany M. A. Moneam

BIOGRAPHY

: Tahany Mohamed Abd El Moneam Name

Date & Place of Birth: 18 September 1952, Cairo , Egypt.

Degrees awarded : B.Sc. Biochemistry, 1974

Faculty of Science

Ain Shams University

M.Sc. Biochemistry, 1987

Faculty of Science

Ain Shams University

Date of registration : September, 1994

For the ph.D.

LIST OF CONTENTS

	<u>Page</u>
- Abstract	
- Acknowledgement	ii
List of Abbreviations	
- List of Figures	v
- list of Tables	vii
INTRODUCTION & AIM OF THE WORK	X
· CHAPTER I	
REVIEW OF LITERATURE	
1- Diabetes Mellitus	
	1
1-1. Definition	
1-2. Classification	
1-2-I. Type I (IDDM)	2
1-2-II. Type II (NIDDM)	2
1-2-III. Malnutrition-Related D.M	
1-2-IV. Other Types of Diabetes	
1-3. Pathogenesis of Type I Diabetes ar	
the Role of Autoimmunity	
1-3-I. Genetic Background	
1-3-II. The Environmental Factors	
a- Drugs or chemicals	
b- Dietary Constituents	7
c- Viruses	
1-3-III. Immunologic Abnormalities	
A- Humoral Mechanisms	
i- Islet Cell Cytoplasmic Antibodies	
(ICA)	8
ii- Islet Cell Surface Antibodies	
(ICSA)	
iii- Insulin (IAA) and Proinsulin (Pa	,
Autibodies	
iv- Other \(\beta\)-cell specific Antibodies	
B- Cell-Mediated Phenomenon	11

<u>Page</u>
1-4. Pathogenesis of Type II Diabetes 12
1-4-1. Primary Insulin Resistance
1-4-2. Primary Insulin Secretory Defect 15
1-5. Insulin
1-6. Assessment of the State of Diabetic
Control
2- Thyroid Hormones
2-1. Effects of Thyroid Hormones
on Carbohydrate Metabolism 22
2-2. Laboratory Tests of Thyroid Hormone
Activity
2-2-1. Serum T_4
2-2-1. Setum T_4
Proteins and Free T_4
2-2-3. T_3 and Free T_3
2-2-4. Serum rT ₃
2-2-5. Serum TSH
2-2-6. Serum TRH
2-2-7. Serum Thyroglobulin
2-2-8. Serum Tests of Thyroid
Autoimmunity
a- Thyroid-Stimulating immuno-
globulins 26
b- Long-Acting Thyroid Stimulator 27
c-Thyroid Antibodies
2-3. Thyroid Autoantibodies
2-4. Autoimmune Thyroid Disease 29
2-5. Antibodies to Thyroid Antigens 32
1- Thyroglobulin
2- Thyroid peroxidase 32
3-TSH Receptor
4- Thyroid Hormones
5- Other Antigens

\underline{p}	<u>age</u>
3- Thyroid Functions in Diabetic	_
Patients	.35
The possible Explanations of Hypothyroidism	
in Some Diabetic Patients	
CHAPTER II	. 71
SUBJECTS & METHODS	
A) Subjects	. 44
B) Methods	
1- Determination of Fasting and Postprandial	
Plasma Glucose	. 49
2- Quantitative Colorimetric Determination	
of HbA ₁ in Blood	. 50
3- Coat-A-Count Insulin	
4- Determination of TSH in Human Serum	. 55
5- Determination of T ₃ in Human Serum	. 58
6- Determination of T ₄ in Human Serum	
7- Thyroid Peroxidase (TPO) Antibodies	
C) STATISTICAL ANALYSIS	
CHAPTER III	
RESULTS	71
CHAPTER IV	/ 1
	~
DISCUSSION	
SUMMARY AND CONCLUSION	
RECOMMENDATIONS	136
REFERENCES	137
ARABIC SUMMARY.	
ARABIC ABSTRACT.	

Abstract

This study includes 20 healthy controls and 73 adult diabetic patients; 38 were IDDM (19 males and 19 females) and 35 were NIDDM (14 males and 21 females). All the poorly controlled diabetic patients with or without complications showed thyroid hormone abnormalities. HbA₁ was used as an index of hyperglycemia. TSH, T₃, T₄, insulin and anti-thyroid peroxidase (anti-TPO) antibody levels were estimated for the patients and controls, by using EIA and RIA methods, serum T₃ was decreased in all uncontrolled diabetic subgroups in both types (IDDM and NIDDM). There was a negative correlation between T₃ and HbA₁. T₄ levels were significantly higher in NIDDM patients than those in the IDDM and control group. TSH levels were significantly higher in the uncontrolled diabetic patients than in the controls. Serum anti-TPO ab levels were higher in uncontrolled diabetics subgroups. In the present study 30.6% of the IDDM and 20% of the NIDDM patients had positive anti-TPO ab.

All the previous abnormalities in the levels of TSH, T_3 , T_4 and anti-TPO ab were not detected in well controlled diabetic patients. Meanwhile non significant difference was found between the levels of the previous parameters in IDDM versus NIDDM group. Thus thyroid function and thyroid autoimmunity should be screened annually in diabetic patients to detect asymptomatic thyroid dysfunction, and to avoid some of the pit-falls that can occur when these two diseases exist in the same patient.