# QUALITY OF SELECTED PROCESSED FOOD STUFFS AS AFFECTED BY ENZYMES AND ADDED COLORING MATERIALS

# BY *EFFAT MAHDY SAYED AHMED RIZK*

B.Sc. (Food Science and Technology) Ain Shams University (1986) M.Sc. (Food Science and Technology) Ain Shams University (1992)

644.01 F. M

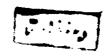
A thesis submitted in partial fulfillmen

the requirements for the degree

DOCTOR OF PHILOSOPHY

in

Agricultural Science (Food Science and Technology)


36258

To

Department of Food Science
Faculty of Agriculture
Ain Shams University

The same of the sa

1997





#### Approval sheet

## QUALITY OF SELECTED PROCESSED FOOD STUFFS AS AFFECTED BY ENZYMES AND ADDED COLORING MATERIALS

#### BY

## EFFAT MAHDY SAYED AHMED RIZK

B.Sc. (Food Science and Technology) Ain Shams University (1986)M.Sc. (Food Science and Technology) Ain Shams University (1992)

This thesis for Ph.D. Degree has been approved by:

#### PROF. DR. F. M. H. ASHOUR

Prof. of Food Science and Dean of Faculty of Agriculture, Moshtohor, Zagazig University.

F. Ashous

#### PROF. DR. NEFERTY F. GAMAL

Prof. of Food Science, Faculty of Agriculture, Ain Shams University.

#### PROF. DR. M. AMIN ABD-ALLAH

Prof. of Food Science, Food Science Dept., Fac. of Agric., Ain Shams University and Dean of the Faculty of Specific Education, Cairo.

Date of examination: i\(\frac{1}{11}/1997\).

# QUALITY OF SELECTED PROCESSED FOOD STUFFS AS AFFECTED BY ENZYMES AND ADDED COLORING MATERIALS

## BY EFFAT MAHDY SAYED AHMED RIZK

B.Sc. (Food Science and Technology) Ain Shams University (1986) M.Sc. (Food Science and Technology) Ain Shams University (1992)

## **Under the supervision of:**

## PROF. DR. M. AMIN ABD-ALLAH

Prof. of Food Science, Food Sci. Dept., Fac. of Agric.,
Ain Shams University
and Dean of the Faculty of Specific Education, Cairo.

### DR. M. G. EL-SHEMY

Associate Prof. of Food Sci. Faculty of Agric., Ain Shams University.

### PROF. DR. H. S. SHALABY

Prof. of Biotechnology and Vice Dean of Higher Institute of Agriculture cooperation

### <u>ABSTRACT</u>

Effat Mahdy Sayed Ahmed Rizk, Quality of selected processed food stuffs as affected by enzymes and added coloring materials. Unpublished Doctor of Philosophy, University of Ain Shams, Faculty of Agriculture, Department of Food Science, 1997.

The problem at hand is dealing with extracting the natural food colorants (red colorants) from roselle and mulberry and (yellow colorants) from turmeric and marigold to study the structure and properties of these colorants, relation between adding these colorants in some processed foods i.e. spaghetti and juices and properties of alpha amylase and pectin methyl esterase as well as the quality characteristics of the selected processed food stuffs.

The obtained data showed that, the best carrier for roselle anthocyanin was dextrin followed by glucose, while dextrin was the only suitable carrier for mulberry anthocyanin. Lactose was more effective adsorpant coated carrier for yellow colorant extracted from turmeric and marigold carotenoids. The anthocyanin colour changes induced by pH variation, however roselle anthocyanin was more stable than the mulberry one up to 70°C. On the other hand, roselle anthocyanin was more stable than mublerry anthocyanin up to 90° min at 70°C.

The highest chromophore loss was observed in carotenoid extracted from turmeric at neutral pH. Carotenoids isolated from turmeric showed a good thermostability in comparing with such that of marigold.

HPLC chromatographic patterns of roselle and mulberry anthocyanin displayed profiles with three pigments identified as cyanidin 3,5-diglucoside, cyanidin 3-arabinoside and delphinidin 3 glucoside for anthocyanin extracted from roselle and two pigments identified as cyanidin 3,5-diglucoside and delphinidin 3 glucoside for anthocyanin extracted from mulberry. On the other hand carotenoids extracted from marigold and turmeric were separated based on their functional groups into three fraction for the first source and four fraction for the latter source.

Properties of alpha amylase extracted from wheat flour 72% extraction and processed spaghetti with different levels of yellow colorants as wells as pectin methyl esterase extracted from mango and strawberry juices with various ratios of yellow colorants and red colorants were also studied.

The higher the level of pigment in prepared spaghetti, the lower is the cooking loss. The cooking loss was 3.3% and 4.5% for spaghetti contained 0.3% turmeric and marigold pigment. For instance, addition of 0.10% marigold or turmeric pigments improved the sensory evaluation of spaghetti manufactured from soft wheat flour 72% extraction.

Strawberry juices prepared in the presence of 0.05 to 0.15% of roselle or mulberry anthocyanin possess a real improving of colour, taste, and general acceptability. However, more than 0.20 anthocyanin may led to unacceptable strawberry juices. Mango juice samples containing 0.15 and 0.20% marigold carotenoids as well as those containing 0.10 and 0.15% turmeric pigment gave superior taste and general acceptability than other tested samples.

Key words: Red colorants, Anthocyanin, Roselle, Mulberry, Yellow colorants, Carotenoids, Marigold, Turmeric, Spaghetti, Alpha amylase, Pectinmethylesterase, Juices, Mango, Strawberry, Pasteurization.

### **ACKNOWLEDGEMENT**

The author would like to give his sincere gratitute to Prof. Dr. M. AMIN ABD-ALLAH, Prof. of Food Science, Fac. of Agric., Ain Shams University and Dean of the Faculty of Specific Education, Cairo, for his continuous Supervision, guidance of the thesis and greatest efforts he offered through supervising of the thesis.

My sincere appreciation is due to Dr. M. G. EL-SHEMY Associate professor of Food Science and Technology, Faculty of Agriculture, Ain Shams University for his continuous supervision, kind attention and great help in accomplishing this work and continuous guidance during writing this thesis.

My deepest thanks are also extended to Prof. Dr. H.S. SHALABY, Prof. of Biotechnology and Vice Dean of Higher Institute Agric., cooperation for his help, valuable advices, continuous encouragement and other facilities he offered through the work.

## **TABLE OF CONTENTS**

|                            |                                                                | Page |
|----------------------------|----------------------------------------------------------------|------|
| 1- INTRO                   | ODUCTION                                                       | 1    |
| II- REVI                   | EW OF LITERATURE                                               | 6    |
| Part                       | I: - Anthocyanin as a natural source of red colorant           | 7    |
| Part                       | II: - Carotenoids as a natural source of yellow colorant       | 14   |
| Part                       | III: - Application of colorants and enzymes in processed foods | 18   |
|                            | 1- Using of red and yellow colorants                           | 18   |
|                            | 2- Application of alpha amylase and pectin methyl esterasse    | 19   |
| III- MAT                   | TERIALS AND METHODS                                            | 25   |
| A- Materials               |                                                                | 26   |
| B- Methods                 |                                                                | 26   |
| B-I- Technological methods |                                                                | 26   |
| B-II- Chemical analysis    |                                                                | 27   |

| * Determination of pigments                                                                                |    |
|------------------------------------------------------------------------------------------------------------|----|
| A- Red colorants (Anthocyanin pigments)                                                                    |    |
| a- Red colorants (Anthocyanin pigments)  Determination of total anthocyanin  Identification of anthocyanin |    |
| b- Yellow colorants (carotenoids)  Determination of total carotenoids  Identification of carotenoids       | 28 |
| B-III- Stabilization of pigments                                                                           | 32 |
| ** Analysis of spaghetti                                                                                   | 32 |
| *** Sensory Evaluation                                                                                     |    |
| B-IV- Enzymes properties: Alpha amylase (in flour) and pectin methylesterase (in Juices).                  | 34 |
| A- Alpha amylase                                                                                           | 34 |
| 1- Alpha amylase activity                                                                                  | 34 |
| 2- Properties of alpha amylase                                                                             | 35 |
| B- Pectin methyl esterase (PME)                                                                            | 36 |
| 1- Pectin methyl esterase activity                                                                         | 36 |
| 2- Properties of pectin methyl esterase                                                                    | 37 |
| RESULTS AND DISCUSSION                                                                                     | 39 |
| Part I:- Extraction, stabilization and identification of the tested colorants.                             | 40 |
| 1- Extraction                                                                                              | 40 |
| A- Red colorant (Anthocyanin)                                                                              | 40 |

| B- Yellow colorant (Casrotenoids)                                                           | 42       |  |
|---------------------------------------------------------------------------------------------|----------|--|
| 2- Stabilization                                                                            | 44       |  |
| A: Red colorant (anthocyanin)                                                               | 44       |  |
| A-1- Effect of pH                                                                           | 44       |  |
| A-2- Effect of temperature                                                                  | 48       |  |
| A-3- Thermal stability                                                                      | 52       |  |
| B- Yellow colorant (carotenoid)                                                             | 56       |  |
| B-1- Effect of pH                                                                           | 56       |  |
| B-2- Effect of temperature                                                                  | 60       |  |
| B-3- Thermal stability                                                                      | 64       |  |
| 3- Identification                                                                           | 68       |  |
| A- Anthocyanin constituents of roselle and mulberry                                         | 68       |  |
| B- Carotenoid constituents of marigold and turmeric                                         | 73       |  |
| PART II: Stability of food colorants and both of enzymes activities and culinary properties | 78       |  |
| 1: Relation between food colorant and enzymes activities                                    | 78       |  |
| A- Alpha amylase                                                                            |          |  |
| A-1- Effect of pH                                                                           | 80<br>80 |  |
| A-2- Effect of temperature                                                                  |          |  |
| A-3- Activation energy                                                                      |          |  |
| A-4- Thermal stability                                                                      |          |  |
| A-5- Rate of denaturation                                                                   | 94       |  |
|                                                                                             |          |  |

| B- Pectin methyl esterase          | 98  |
|------------------------------------|-----|
| B-1- Effect of pH                  | 102 |
| B-2- Effect of temperature         | 106 |
| B-3- Activation energy             | 110 |
| B-4- Thermal stability             | 110 |
| B-5- Rate of denaturation          | 116 |
| 2- Culinary properties             | 121 |
| A: Cooking loss and swelling index | 121 |
| B: Sensory Evaluation              | 124 |
| a) Spaghetti                       | 124 |
| b) Strawberry juices               | 128 |
| c) Mango juices                    | 132 |
| SUMMARY AND CONCLUSION             | 136 |
| REFERENCES                         | 146 |
| ARABIC SUMMARY                     | -   |