THERMAL AND MOISTURE PERFORMANCE OF CONCRETE DURING THE EARLY AGES OF DRYING

THESIS
Submitted for the Degree of Ph.D.

IN

PHYSICS

530.41 H.A

TO
Physics Department
Faculty of Science

Ain Shams University

By

MAGDY ABD EL-HAMEED AHMED HELAL (B.Sc., M.Sc.)

Building Research Center, Cairo

1996

AIN SHAMS UNIVERSITY FACULTY OF SCIENCE

ACKNOWLEDGEMENT

I wish to express my deep gratitude to Prof. Dr. Mohamed Fathy Kotkata, Physics Department, Ain Shams University, for his supervision and continuous advise.

I wish to express my deep gratitude to Prof. Dr. Eng. Hamdy Hamed Shaheen, Professor and Head of Reinforced Concrete Department, Building Research Center, for his supervision, encouragement and valuable discussions.

I wish to express my deep thanks to Dr. Mohamed Mahmoud Abd EL-Razek, Building Physics Department, Building Research Center, for valuable discussions and encouragement.

Tanks to all my colleagues at the Building Physics Department, Building Research Center.

Thanks are also to Prof. Dr. M. Ramez, Chairman of the Building Research Center and Prof. Dr. M.A. EL-Sharkawy, Head of Physics Department of the Faculty of Science, Ain shams University.

CONTENTS

			Page
LIST OF I	IGURI	ES	V
LIST OF T	'ABLE	S	xii
KEY WOF	RDS		xiii
ABSTRAC	T		XV
GENERAL	. INTR	ODUCTION	1
CHAPTER	21 C	LIMATIC FACTORS OF EGYPT	
	A	ND REVIEW OF PREVIOUS WORK	6
	1.1	CLIMATIC FACTORS OF EGYPT	6
	1.1.1	Solar Radiation	6
	1.1.2	Wind Speed	7
	1.1.3	Relative Humidity	7
	1.1.4	Air Temperature	7
	1.2	PREVIOUS WORK	11
	1.2.1	Concrete and Environment	11
	1.2.2	Heat of Hydration	15
	1.2.3	Moisture Diffusion	
	1.2.4	Drying Shrinkage	19 23
	1.2.5	Curing	27

		Page
CHAPTER 2	THEORETICAL ANALYSIS OF	
	HEAT AND MASS TRANSFER	
	THROUGH CONCRETE	31
2.1	CONCRETE AS A MULTI-PHASE	
	MATERIAL	31
2.2	MOISTURE PERFORMANCE OF	
	FRESH CONCRETE	32
2.3	SOLAR RADIATION ON	
	HORIZONTAL SURFACES	38
2.4	STATEMENT OF THE PROBLEM	39
2.5	BOUNDARY CONDITIONS OF THE	
	PROBLEM	42
2.6	THE FINITE DIFFERENCE	
	PROCDURE	46
2.7	THE HEAT BALANCE EQUATIONS.	47
2.8	THE MOISTURE BALANCE	
	EQUATIONS.	50
$\sum_{i} G_i$	ALGORITHM TO SOLVE THE	
	PROBLEM IN THE FINITE	
	DIFFERENCE FORM USING MICRO	
	COMPUTERS.	5/4
2.10	EVAPORATION RATE AT	
	CONTROLLED CONDITIONS	55
2.11	THE PERFORMANCE THROUGH	
	FRESH CONCRETE EXPOSED TO	
	DIRECT SOLAR RADIATION	68

		Page
CHAPTER 3	EXPERIMENTAL PROGRAM AND	
	INSTRUMENTATION	70
3.1	VARIABLES CONSIDERED	70
3.2	EXPERIMENTAL PROGRAM	71
3.2.1	Materials and Preparation of Concrete	
	Mixes	71
3.2.2	Samples Description	72
3.3	MEASUREMENTS AND	
	INSTRUMENTS	80
3.3.1	Loss of Weight	80
3.3.2	Volume Change of Concrete	
0.0.0	"Shrinkage"	83
3.3.3	Temperature Distribution	84
3.3.4	Moisture Distribution	84
3.3.5	Climatic Data	87
3.3.6	Thermophysical Properties	87
CHAPTER 4	LOSS OF WATER AND	
	SHRINKAGE OF CONCRETE AT	
	EARLY AGES	90
4.1	THERMOPHYSICAL PROPERTIES	90
4.2	LOSS OF WATER FROM FRESH	
	CONCRETE	92
4.2.1	Water Cement Ratio and Cement Content	92
4.2.2	Aggregate Type	97
4.2.3	Exposure Conditions	
4.2.4	Relative Humidity	99
4.2.5	Surface Temperature	102
		104

			Page
	4.2.6	Curing Time	106
	4.3	SHRINKAGE OF FRESH CONCRETE	107
	4.3.1	Water Cement Ratio	107
	4.3.2	Temperature of the Top Surface	11()
CHAPTER	5	THERMAL AND MOISTURE	
		PERFORMANCE THROUGH FRESH	
		CONCRETE	116
	5.1	TEMPERATURE DISTRIBUTION	
		THROUGH FRESH CONCRETE	116
	5.1.1	Water Cement Ratio	116
	5.1.2	Constant External Thermal Source	117
	5.1.3	Curing Method and Timing	119
	5.2	MOISTURE DISTRIBUTION	148
		THROUGH FRESH CONCRETE	
	5.2.1	Water Cement Ratio	148
	5.2.2	Constant External Thormal Source	154
	5.2.3	Curing Method and Timing	154
CONCLUS	ION		7
REFERENC	ES		175
PUBLISHEI) ARTI	CLES FROM THE PRESENT WORK	184
ARABIC SU	MMAI	RY	186

LIST OF FIGURES	pag
Fig. (1): Annual average distribution of direct solar radition over	
Egypt in (w/m ²).	8
Fig. (2): Annual average distribution of the diffuse solar radiation	
over Egypt in (w/rn ²).	8
Fig. (3): Distribution of the average wind speed lines for Egypt	
during winter.	9
Fig. (4):Distribution of the average wind speed lines for Egypt	
during summer.	9
Fig. (5): Distribution of the mean relative humidity percent through	
the different seasons in Egypt.	10
Fig. (6): Distribution of the mean maximum temperature in °C	
through the different seasons in Egypt.	12
Fig. (7): Distribution of the mean minimum temperature in °C	
through the different seasons in Egypt.	13
Fig. (8): Model of concrete, mortar or cement paste.	33
Fig. (9): Moisture at various stages in the drying of a porous	
material.	33
Fig. (10): Heat transfer modes on drying	37
Fig. (11): The space time grid.	46
Fig. (12): The monthly mean outdoor air temperature and relative	
humidity variation in some cities in Egypt.	56
Fig. (13): The calculated monthly mean solar radiation incident on	
some cities in Egypt through the year.	57
Fig. (14): The calculated monthly mean evaporation rate in some	
cities in Egypt.	57

		page
Fig. (15. a,b)	The variation of evaporation rate with relative	
	humidity at different wind speed and constant	
	temperature, (20, 30 $^{\rm O}{ m C}$).	50
Fig. (15, e,d)	The variation of evaporation rate with relative	
	humidity at different wind speed and constant	
	temperature, (40, 50 °C).	61
Fig. (16. a,b)	The variation of evaporation rate with relative	
	humidity at different temperature and constant	
	wind speed, (2.4 m/s).	62
Fig. (16, e,d)	The variation of evaporation rate with relative	
	humidity at different temperature and constant	
	wind speed, (10,20 m/s).	63
Fig. (17. a,b):	The variation of evaporation rate with wind speed	
	at different relative humidity and constant	
	temperature, ($20, 30^{-6}$ C).	64
Fig. (17. c.d)	The variation of evaporation rate with wind speed	
	at different relative humidity and constant	
	temperature, ($40,50^{-9}\mathrm{C}_{\odot}$	65
Fig. (18-a.b)	The variation of evaporation rate with wind speed	
	at different temperature and constant relative	
	humidity. (80.60 %).	66
Fig. (18 c.d)	The variation of evaporation rate with wind speed	
	at different temperature and constant relative	
	humidity. (40, 20 %).	67
Fig. (19)	The computed temperature and moisture	
	distribution within different deaths	60

	THEE C
Fig. (20) . The samples in the discovator and in the indoor	
environment.	75
Fig. (21): The samples in the different techniques for exposure	
conditions.	75
Fig. (22): Position of the external thermal source over the	
specimens.	78
Fig. (23): The samples in the field over the roof.	79
Fig. (24) : Distribution of the thermocouples and electrodes in the	
specimens.	82
Fig. (25): Schemtic diagram of the apparatus.	85
Fig. (26): The optical system of the apparatus.	86
Fig. (27): Thermal Conductivity meter model TC-32.	89
Fig. (28): The time-water loss relationship for three water cement	
ratios at different cement doses through the first 7 hours	
after casting.	94
Fig. (29): The time-water loss relationship for three water cement	
ratios at different cement doses through the first 7 days	
after casting.	96
Fig. (30): The time-water loss relationship for the two types of	
aggregate.	98
Fig. (31): The time-water loss relationship for different climatic	
conditions.	100
Fig. (32): The time-water loss relationship for two water cement	
ratio in two relative humidity valus for the first week	
after casting.	103

	page
Fig. (33): The change in the water loss and surface temperature	
with time for the three external thermal source applied	
for the first 12 hours only after casting.	105
Fig. (34): The time-water loss relationship for the three samples	
with three different curing time through the first week	
from casting.	105
Fig. (35): The relations between shrinkage and time for three water	
cement ratio 0.4, 0.5, an 0.6 through the first two days	108
Fig. (36): The relations between shrinkage and time for three	
different surface temperature	
Fig. (37): The time water loss relationship for three water cement	
ratios through the first 12 hours.	113
Fig. (38): The relations between shrinkage and time for three	11,7
water cement ratios through the first 12 hours.	113
Fig. (39): The relationship between the water loss and shrinkage	
for various water cement ratios.	114
Fig. (40): The temperature variation at different depthes within the	
three mixes through the first 10 hours after east in the	
indoor conditions	118
Fig. (41) The temperature distribution at exposed and bottom	
surfaces with time for three external thermal sources	
through the first 12 hours after casting	120
Fig. (42). The temperature distribution through the sample. (12)	
during the drying period.	i 21
Fig. (43): The temperature distribution through the sample: (1):	
during the drying period.	1.74
	124

	Page
Fig. (44) — The temperature distribution through the sample $^{\circ}$ Δ	
during the drying period.	127
Fig. (45): The temperature distribution through the sample "B"	
during the drying period.	130
Fig. (46) : The temperature distribution through the sample " $F^{\ n}$	
during the drying period.	132
Fig. (47) : The temperature distribution through the sample " E "	
during the drying period.	135
Fig. (48. a,b): Comparison between the temperature performance	
through "C" and "D" samples at the first 48	
hours, (Stream and Exposed).	137
Fig. (48, c,d): Comparison between the temperature performance	
through "C" and "D" samples at the first 48	
hours, (Middle and Bottom).	139
Fig. (49. a,b): Comparison between the stream and exposed surface	
temperatures performance for the three samples	
"A", " B " and " E " through the 48 hours after	
casting.	141
Fig. (49. c,d): Comparison between the stream and exposed	
surface temperatures performance for the three	
samples "A", "B" and "E" through the 7	
days after easting.	143
Fig. (50. a,b): Comparison between the stream and exposed	
surface temperatures performance for the two	
samples "B" and "F" through the 48 hours	
after casting.	144

	page
Fig. (50, c.d): Comparison between the stream and exposed	
surface temperatures performance for the two	
samples "B" and "F" through the 7 days after	
casting.	146
Fig. (51) : The temperature distribution within the sample " $C^{\prime\prime\prime}$	
through the first and second day after casting.	147
Fig. (52). Comparison between measured and calculated	, , ,
temperature distribution through different depths in	
"C" sample.	149
Fig. (53.a): The electrical resistance performance within different	
zones for three water cement ratio through the first	
12 hours.	151
Fig. (53.b): The electrical resistance performance within different	
zones for three water cement ratio through the first 7	
days.	152
Fig. (54. a,b): The electrical resistance performance within	1,12
different zones of samples 2 and 28 through the	
first 12 hours after casting.	155
Fig. (54 c.d). The electrical resistance performance within	
different zones of samples 29 and 30 through	
the first 12 hours after easting.	156
Fig. (55) The electrical resistance change with time within the	
sample "C" through the 7 days after easting.	158
Fig. (56): The electrical resistance change with time within the	
sample " A " through the 7 days after casting.	159
Fig. (57) The electrical resistance change with time within the	
sample " B " through the 7 days after casting	161