Evaluation Cosmetic Outcome In Stage I And II Breast Carcinoma After Conservative Treatment

Essay

Submitted For Partial Fulfillment of Master Degree in Clinical Oncology and Nuclear Medicine

By

Lamiaa Moustafa Abdel Megied Mohamed *M.B.,B.Ch*

Under Supervision of

Prof.Dr. Iman Aly El Sharawy
Professor of Clinical Oncology and Nuclear Medicine
Faculty of Medicine, Ain Shams University

Dr. Dina Ahmed Mohamed Salem

Assistant Professor of Clinical Oncology and Nuclear Medicine Faculty of Medicine, Ain Shams University

Dr. Mai Mohamed Ali Ezz EL Deen

Lecturer of Clinical Oncology and Nuclear medicine Faculty of Medicine, Ain Shams University

Faculty of Medicine
Ain Shams University
2013

بِسْمِ اللَّهِ الرّحَمَٰنِ الرّحيم

(...رَبِّ أُوزِعنِي أَن أَشكُرَ نِعمَتَكَ النِّي أَنْعَمْتَ عَلَيَّ و عَلى والدَيَّ و أَنْ أَعْمَلَ صَالِحاً تَرْضَاهُ و أَدْخِلْنِي و أَنْ أَعْمَلَ صَالِحاً تَرْضَاهُ و أَدْخِلْنِي بِرَحْمَتِكَ فِي عِبَادِكَ الصَّالِحِينَ)

صدق الله العظيم

النمل. اية رقم 19

First and foremost, I thank Allah who gave me the strength to fulfill this work.

I would like to express my sincere gratitude to **Prof. Dr. Iman Aly El Sharawy,** Professor of Clinical Oncology and Nuclear Medicine, Faculty of Medicine, Ain Shams University, for her kind supervision, encouragement and constant help. I have the honor to complete this work under her supervision.

I am grateful to **Dr. Dina Ahmed Mohamed**Salem, Assistant Professor of Clinical Oncology and
Nuclear Medicine, Faculty of Medicine, Ain Shams
University, for his constant supervision and honest
assistance. His moral support cannot be praised
enough with words.

It is a great honor to express my sincere appreciation to **Dr. Mai Mohamed Ali Ezz El Deen,** Lecturer of Clinical Oncology and Nuclear medicine, Faculty of Medicine, Ain Shams University, for her kind supervision, continuous encouragement and persistent support, her valuable advice helped me complete this work.

Lamiaa Moustafa Abdel Megied Mohamed

I would like to dedicate this Essay

To my Father, to my Mother
To my Brother to my Sister
and To my Husband
To them I will never find adequate words
to express my gratitude.

List of Contents

Subject	Page No.
List of Abbreviations	i
List of Tables	iii
List of Figures	iv
Introduction	1
Aim of the Work	7
Chapter (1): Epidemiology and Risk fa	actorsError! Bookmark not defined.
Chapter (2): Histopathology	23
Chapter (3): Molecular Biology	35
Chapter (4): Diagnosis and Staging	47
Chapter (5): Treatment of Invasive Bl	adder
Cancer	64
Summary	117
References	122
Arabic Summary	

List of Abbreviations

ABC : Advanced Bladder cancer meta-analysis collaboration

AJCC: American Joint Committee on Cancer

ATP : Adenosine triphosphate

BC : Bladder cancer BT : Brachytherapy

CALGB : Current Cancer and Leukemia Group B

CBC : Complete blood count
CIS : Carcinoma in situ

cIScA : Cisplatin, cyclophosphamide, and adriamycine

CM : Cyclophosmamide - methotrexate

CMV : Cyclophosmamide - methotrexate – vincrstine

CT : Computed tomography
CTV : Clinical Target Volume

EAU : European Association of Urology EBrT : External beam radiation therapy

ECOG : Eastern Cooperative Oncology Group EGFR : Epidermal growth factor receptor

EorTc : European Organization for research and Treatment of cancer

ESMO : European Society for Medical Oncology FAcT : Functional Assessment of cancer Therapy

FDG-PET : Fluorodeoxyglucose -positron emission tomography

FISH : Florescence in suit hybridization

GC : Gemcitabine, Cisplatin

Gy : Gray

hAL : Hexaminolaevulinate

hrQoL: Health-related quality of life

IArc : International Agency for research on cancer

IHC : ImmunohistochemistrymAbs : Monoclonal antibodies

MIBC : Muscle-invasive bladder cancerMRI : Magnetic resonance imaging

List of Abbreviations (Cont...)

MVA(E)c : Methotrexate-vincrstine- adriamycin (epirubicin) -cyclophosmamide

NCCN: National Comprehensive Cancer Network

NcI : National cancer Institute

NmIBc : Non-musle invasive bladder cancer

OAR : Organ at risk

PAhs : Polycyclic aromatic hydrocarbons

PFS : Progression free survival

Ps : Performance status PTV : Planning target volume

PUNLMP: Papillary urothelial neoplasms of low malignant potential

RALC : Robotic-assisted laparoscopic cystectomy

Rb : Retinoblastoma generP : Radical prostatectomyRTKs : Receptor tyrosin e kinases

RTOG: Radiation Therapy Oncology Group

SCCs : Squamous cell carcinomas

SEER : Surveillance, Epidemiology and End Results

SES : Socioeconomic status

SWOG : Southwest Oncology Group TCC : Transitional cell carcinoma

TKI : Tyrosine receptor kinase inhibitors

TNM : Tumor,node,metastasis
TUR : Transureasal resction

TURBT: Transurethral resection of bladder tumor

URCa : Urothelial carcinomaUS : Ultrasonography

VEGF : Vascular endothelial growth factor

WHO : World Health Organization

3-D : three - Dimensional4-ABP : 4-aminobiphenyl5-ALA : 5-aminolevulinic acid

5-FU : 5-fluorouracil

List of Tables

Table No	. Title	Page	No.
Table (1):	WHO 2004 Histologic Classification Tumors of the Urinary Bladder		31
Table (2):	Histologic Patterns of Lamina I Invasion	-	33
Table (3):	Established clinicopathologic and po- molecular prognostic parameters superficial and muscle invasive uro carcinoma of bladder	s in othelial	38
Table (4):	American Joint Committee on (AJCC) TNM Staging System for E Cancer Cancer	Bladder	60
Table (5):	AJCC Stage Groups		61
Table (6):	Most common complication of cystectomy		69
Table (7):	Randomized phase 3 trials of neoac chemotherapy		90
Table (8):	Adjuvant chemotherapy trials followstectomy	•	106

List of Figures

Figure No	. Title	Page	No.
Figure (1):	Incidence & Mortality rate of cancer		10
Figure (2):	Urothelial carcinoma with squaifferentiation and keratinization		26
Figure (3):	Squamous cell carcinoma associate Schistosomiasis shows a differentiated squamous cell car (arrow) infiltrating the muscularis p	well- cinoma	28
Figure (4):	High-grade urothelial carcinoma i into adipose tissue in muscularis proj		30
Figure (5):	Urothelial carcinoma, nested Closely packed nests of urothelial ce bland cytological features	lls with	30
Figure (6):	Urothelial carcinoma, giant cell varia	ınt	30
Figure (7):	Sarcomatoid variant of ur carcinoma, heterologous type, malignant cartilage	with	30
Figure (8):	Divergent molecular pathway oncogenesis in superficial and invasive urothelial carcinoma of bladder	muscle urinary	36
Figure (9):	Axial CT image of the bladder solution large urothelial carcinoma. The irregular soft-tissue stranding from invasion into the perivesical	ere is tumor	51

List of Figures (Cont...)

Figure No	. Title P	age	No.
Figure (10):	CT urography images show a asymmetric thickening of anterior blackwall.	dder	52
Figure (11):	Invasive urothelial carcinoma. A gadolinium-enhanced fat-suppressed weighted MR image of the bladder	T1-	54
Figure (12):	Longitudinal US image of the black shows a large, hypoechoic urother carcinoma within the bladder	elial	55
Figure (13):	T staging in bladder cancer		61
Figure (14):	Difference of overall survival between VAC+Cystectomy and Cystectomy alon		84
Figure (15):	Anterior–posterior and lateral RT field bladder cancer		97
Figure (16):	CT axial slice with Clincal target volume whole bladde, Planning Target Volume Organ at risk. Rectum	and	98
Figure (17):	Axial CT slice showing conformal plan whole bladder irradiation		98
Figure (18):	Schema for trimodality treatment invabladder cancer with selective black preservation	dder	103
Figure (19):	Flowchart on the management for T2 N0M0 urothelial bladder cancer		107

Introduction

Bladder cancer is a common urologic cancer. In 2010, the urinary bladder was the fourth most common site of new cancer cases in the United States, with an estimated 70,530 new cases and 14,680 deaths More than 60,000 new cases of bladder cancer are diagnosed each year in united state. It is more common in men, with a male: female ratio of 4:1 (*Jemal et al.*, 2010).

Age appears to increase the risk; the median age upon presentation with bladder cancer is 72 years for men and 74 years for woman (*Jacobs et al.*, 2010).

In developed countries, 90% of bladder cancers are Transitional cell carcinoma (TCC). In developing countries—particularly in the Middle East and Africa—the majority of bladder cancers are squamous cell carcinomas (SCCs), and most of these cancers are secondary to Schistosoma haematobium infection (*Steinberg*, 2013).

In Africa, the highest incidence of SCC has been seen in schistosomal-endemic areas, notably Sudan and Egypt. In recent years, a few studies from Egypt have shown a reversal of this trend due to the better control of schistosomiasis in the region, whereas in other parts of Africa the association is unchanged (*Heyns et al.*, 2008). Increased smoking incidence is

believed to have contributed to the shift toward TCC in Egypt, which has a stronger smoking association (*Steinberg*, 2013).

A number of etiological factor are associated with the development of bladder cancer such as chronic urinary infection, pelvic Radiation, chemotherapy with cyclophosamide and occupational exposure to aromatic amines. However Cigarette smoking is the largest risk factor for bladder cancer (*Jacobs et al.*, 2010).

Clinically, Hematuria is the hallmark sign of bladder cancer, occurring in 85% of patients at presentation. Increased urinary frequency and dysuria may also be presenting symptom. More advanced disease may present with pelvic pain and all the symptoms of urinary obstruction (*Stenzl et al.*, 2010).

The American Joint Committee on Cancer TNM (primary tumor, regional lymph nodes, and distant metastasis) Staging System is used for staging bladder cancer. Correct staging can estimate the prognosis and risk of recurrence and is used to determine treatment strategies. Under staging, a common problem may result in incorrect treatment decisions (*Kulkarni et al., 2010*). There is a 10% chance that a high-grade Ta or T1 lesion is really muscle-invasive disease (*Babjuk et al., 2010*).

Muscle-invasive bladder cancer (clinical stage cT2-cT4a) is an aggressive epithelial tumor with a high rate of early

systemic dissemination and 5-year survival depending principally on pathologic stage and nodal status. Although only one-third of the newly diagnosed bladder cancers are advanced at presentation, another 15–30% of high-grade superficial tumors progress to muscle-invasive tumors, usually within 5 yr (*Fabio and Cora*, 2008).

The gold standard for diagnosis is cystoscopy. Intraurethral lidocaine is used to perform this procedure, in which abnormal tissue is resected. This resection is called transurethral resection of bladder tumor (TURBT) (Babjuk et al., 2010). Urinary cytology is an important adjunct to cystoscopy and is helpful for identifying high-grade tumors, such as carcinoma in situ (CIS). The presence of exfoliated cancerous cells can indicate cancer anywhere along the urinary tract, and the absence of cancer cells does not rule out the presence of a low-grade lesion (Sexton et al., 2010).

CT and MRI may be used to determine the stage of bladder cancer; however, they are unable to accurately detect early metastatic disease. Ultrasonography is being used more frequently and is advantageous because it does not require contrast agent (*Babjuk et al.*, 2010). Another imaging modality is IV urography. If invasive disease is suspected, diagnostic imaging should be done prior to TURBT because inflammation from TURBT can be impossible to distinguish from tumor growth in the perivesical fat (*Suzanne et al.*, 2011).

Approximately one-third of patients diagnosed with muscle-invasive bladder cancer have metastatic disease at the time that the first tumor is treated (*Stenzl et al., 2010*). It is important to determine the presence of distant metastasis prior to treatment selection. The most common sites of metastasis are the lungs, bones, and liver (*Jacobs et al., 2010*).

TURBT performed during cystoscopy is a treatment as well as diagnostic tool. All visible lesions should be removed, along with muscle tissue, to ensure complete resection and proper staging (*Pharmd et al., 2011*). For localized muscle-invasive disease, radical cystectomy is the standard treatment. Although it is desirable to preserve the bladder, delaying radical cystectomy is thought to increase the risk of lymph node metastasis by 26% (*Mslis et al., 2011*).

Neoadjuvant therapy administering chemotherapy prior to radical cystectomy can help determine the sensitivity of the carcinoma to the selected chemotherapeutic agents. Other advantages include better patient tolerability to chemotherapy prior to radical cystectomy and delivery of therapy at the earliest time, when occurrence of micrometastatic disease is expected to be low. Among the disadvantages associated with the use of neoadjuvant are staging errors and overtreatment (*Suzanne et al.*, 2010). Chemotherapy should include a cisplatin-containing regimen, either MVAC (methotrexate, vinblastine, doxorubicin, and cisplatin) or GC (gemcitabine and cisplatin). Neither

combination has been shown to be superior to the other; However, GC is less toxic (*Sonpavde et al.*, *2010*).

The use of adjuvant chemotherapy postoperatively has not been shown to have a benefit. Additionally, patients often cannot tolerate systemic chemotherapy after radical cystectomy. The European Association of Urology (EAU) guidelines recommend adjuvant therapy for clinical trials, but not for routine use (*Cowan et al.*, 2010).

Bladder -preserving approaches are reasonable alternatives to cystectomy for patients who are medically unfit for surgery and those seeking an alternative (*National Comprehensive Cancer Network (NCCN)*, 2013).

A trimodality treatment approach for muscle-invasive bladder cancer consists of transureasal resction (TUR) for the primary tumor followed by a combination of local radiation therapy and systemic chemotherapy (*Weiss et al.*, 2006).

Radiation alone is not considered standard treatment for patients with an invasive bladder tumor. Because the initial complete response and long-term bladder preservation rates are higher with chemotherapy combined with radiotherapy (*Gospodarowicz*, 2000).

Antiangiogenic therapy is under investigation as secondline therapy (*Bellmunt et al.*, 2010). Vascular endothelial growth factor (VEGF) is the most important stimulator of