EFFECTS OF ENVIRONMENTAL POLLUTANTS ON REPRODUCTIVE PERFORMANCE OF FARMED FISH

By KAREEM MOHAMED AHMED AHMED

B.Sc. Agric. Sc. (Fish Production), Ain Shams University, 2002 M.Sc. Agric. Sc. (Animal physiology), Ain Shams University, 2009

A thesis submitted in partial fulfillment

of

the requirements for the degree of

DOCTOR OF PHILOSOPHY

Agricultural Sciences
(Animal Physiology)

Department of Animal Production
Faculty of Agriculture
Ain Sham University

EFFECTS OF ENVIRONMENTAL POLLUTANTS ON REPRODUCTIVE PERFORMANCE OF FARMED FISH

By

KAREEM MOHAMED AHMED AHMED

B.Sc. Agric. Sc. (Fish Production), Ain Shams University, 2002 M.Sc. Agric. Sc. (Animal Physiology), Ain Shams University, 2009

Under the supervision of:

Dr. Amin Abd El-Mouaty El-Gamal

Prof. Emeritus of fish Breeding, Department of Animal Production, Faculty of Agriculture, Ain Shams University. (Principal supervisor)

Dr. Mohamed Fathy Osman

Prof. Emeritus of Fish Nutrition, Department of Animal Production, Faculty of Agriculture, Ain Shams University

Dr. Mohamed Abdel Baky Amer

Associate Prof. of Fish Physiology, Department of Animal Production, Faculty of Agriculture, Ain Shams University

ABSTRACT

Kareem Mohamed Ahmed Ahmed: Effects of Environmental Pollutants on Reproductive Performance of Farmed Fish. Unpublished Ph.D. Thesis, Department of Animal Production, Faculty of Agriculture, Ain Shams University, 2015.

The testis-ova or ovo-testis is the presence of female germ cells, or oocytes, within male gonads, it has been used as biomarker for detecting xenoestrogens exposure.

Two screening experiments in 2011 and 2012 were performed to detect signs of estrogenic compounds on male Nile tilapia *O. niloticus* fish inhabit Lake Manzala. Experimental samples were collected from five drainage endpoints areas 1) El-Bashtir, 2) El-Gamil, 3) El-Inaniya, 4) El-Sirw, and 5) El-Temsah where water was contaminated with different mixture of industrial, domestic and agriculture pollutants. In addition, Nile tilapia males were exposed to three different concentrations of estrogen like compound nonylphenol ethoxylate as a laboratory experiment. The contamination dosages of nonylphenol ethoxylate (NPE) were 25, 50 and 100 µg/l administrated for 126 days in rearing tanks, to be comparable with the data obtained from the above-mentioned locations. Eighteen to twenty wild male samples were dissected; both gonads and liver were taken the GSI and HSI was calculated and processed for histological examination.

The presence of oocytes within the testicular tissue was explicit; hence, severity index (0-4) was developed based on the number of oocytes per testicular tissue section. The number of histological section examined to clearly detect intersex in tilapia was 4-6 section per fish during the two sampling seasons; likewise, were done for the lab experiment. From each histological section, three microscopic fields were examined to determine the developmental stage in each fish; and 100% of the three sections were examined for the presence of tests-ova.

In the survey part, staging males gonads showed stages II Early spermatogenesis to stage IV Late spermatogenesis of normal histological development of the testes. Testes-ova (To) were found in all collection sites and most collected samples in both seasons with different occurrence percentage and severity. Although, females showed seasonal differences in the first season; stage (VI) spent of normal histological development of the ovaries appeared to be the common stage with almost 100% of the collected samples. Stages (III) cortical alveoli formation to stage (V) Ripe, where detected in the second season with almost all cases. A few atretic oocytes were found in both seasons due to seasonal differences and the multi-cyclic reproductive pattern of tilapia. In lab experiment, the percentages of testis-ova calculated from individuals of the experiment were 10, 28 and 50% for the treated groups 25, 50 and 100 µgl⁻¹, respectively. Furthermore, severity on all examined samples in the lab experiment were minimal to mild (1-3 testis-ova/section). Where, overall severity was mild for 25 µgl⁻¹ group and minimal for 50 and 100 µgl⁻¹ groups.

Key words: Xenoestrogens, Lake Manzala, Testis-ova, Endocrine disrupting chemicals, *O. niloticus*, Nonylphenol ethoxylate.

ACKNOWLEDGMENT

Firstly, all praise to Allah; the Magnificent, the merciful, without whose bless and guidance this work would never have been started nor completed.

All thanks and utmost respect and gratitude to my supervisors, **Prof. Dr. Amin Abd El-Mouaty El-Gamal, Prof. Dr. Mohamed Fathy Osman and Prof. Dr. Mohamed Abdel Baky Amer**, Fish Production
Branch, Animal Production Department, Faculty of Agriculture, Ain
Shams University for their guidance, technical and incorporeal support, encouragement, instructive discussion and constructive criticism throughout this study.

I would like to express my thanks to the **Academy of Scientific Research and Technology** for providing financial support to this study.

I would like to express my sincere gratitude to **Dr. Ahmed Abdo Hal**, Researcher, National Institute of Oceanography and Fisheries, for his help during sample collection from Lake Manzala.

I also wish to express my sincere thanks to all my colleagues and workers of Fish Production Branch and Animal Production Department for each help they offered throughout this study. Special thanks and sincere gratitude to my family for their patience and enthusiastic support throughout my journey to achieve this work.

LIST OF CONTENTS

No.		Pa
I.	INTRODUCTION	1
II.	REVIEW OF LITERATURE	4
2.1.	Lake Manzala	4
2. 1. 2.	Characteristics of Lake Manzala	4
2.1.3.	Lake Manzala Fish production	6
2.1.4.	Contaminants monitored in Lake Mazala	7
2.2.	Tilapia Reproduction	10
2.3.	Hormonal Disruptors	10
2.3.1.	Hormonal Disruptors Mode of action	11
2.4.	Nonylphenol ethoxylate (NP9) physical and chemical	
	properties	12
2.4.1.	NPEs world production and Usage	13
2.4.2.	Environmental occurrence and Environmental fate	16
2.4.3.	Metabolism and excretion	17
2.4.4.	Estrogenic effects of NP and NPE	18
2.5.	Vitellogenin	19
2.6.	Reproductive and developmental effects	20
III.	MATERIALS AND METHODS	24
3. 1.	Survey location Part I	24
3.1.1.	Sampling locations description	24
3.1.2.	Fish Samples	24
3.1.3.	Water Parameters	24
3.2.	Part II Laboratory Experiment	27
3.2.1.	Environmental factors	27
3.2.2.	Chemicals	27
3.2.3.	Experimental fish and management	28
3.2.4	Experimental Design	29
3.2.5	Nutritional parameters and feeding	29
3.2.5.1.	Fish samples and measurements	30
3.2.6.	Physiological and Morphological parameters	30

3.3.	Histology	31
3.3.1.	Males	31
3.3.2.	Females	32
3.4.	Statistical analysis	32
IV	RESULTS AND DISCUSSION	34
	Part I Survey	34
4.1.	Morphological parameters	34
4.2.	Gonadosomatic index (GSI)	35
4.3.	Hepatosomatic Index (HSI)	35
4.4.	Gonadal staging	36
	Part II Laboratory Experiment	47
4.5.	Anatomical and morphological parameters	47
4.6.	Survival rate	47
4.7.	Liver weight and Hepatosomatic index (HSI)	49
4.8.	Gonads weight and GSI	51
4.8.1.	Testicular histology	52
\mathbf{V}	CONCLUSION	58
VI	SUMMERY	59
VII	REFERENCES	63
VIII	APPENDICES	77
VIIII	ARABIC SUMMERY	

LIST OF TABLES

No.		Page
1	Comparison of hormones and endocrine disruptors action	15
2	Nonylphenol ethoxylate NPE9 general formula	16
3	Water Parameters.	26
4	Summary of The experimental treatments	29
5	Daily formulated feed portion	30
6	Fish sex ratio in different investigated areas for season1 and	
	2 Samples	34
7	Males anatomical data in the first and Second Sample	
	expressed as average \pm SE	37
8	Females anatomical data in the first and Second Samples	
	expressed as average \pm SE.	38
9	Lab experiment fortnightly average total tank weight \pm SE	
	during the experimental period for NP9 treated groups	48

LIST OF FIGURES

No.	
1	Sampling sites at Lake Manzala
	Photograph of 5µ testicular transvers section of O. niloticus
2	stained with H&E, El-Serw area during Season 1 (post-
	spawning season)
	Photograph of 5µ testicular transvers section of O. niloticus
3	stained with H&E, Bashteer area samples during post
	spawning season
	Photograph of 5µ testicular transvers section of O. niloticus
4A	stained with H&E, showing mature testes sampled during
	Season 2 (spawning season) 10x
	Photograph of 5µ testicular transvers section of O. niloticus
4B	stained with H&E, showing mature testes sampled during
	Season 2 (spawning season) 20x
	Photograph of 5µ ovarian transvers section of O. niloticus
5A	stained with H&E Showing different developmental stages
	of oocytes during first season 4x
5B	O. niloticus ovary during spawning season showing
JD	maturation phase 4x
	Photograph of 5µ ovarian transvers section of O. niloticus
5C	stained with H&E Showing different developmental stages
	of oocytes 4x
5D	O. niloticus ovary during post- spawning season 4x
6	Fortnightly Average body weight of O. niloticus exposed to
O	different doses of NP9
7	Fortnightly average survival rate of O. niloticus exposed to
,	different doses of NP9 during experimental period
8	Average liver weight of O. niloticus exposed to different
J	doses of NP9 at the end of experimental period
9	GSI and HSI of O. niloticus exposed to different doses of
,	NP9 at the end of experimental period

10A	10Δ	Photograph of 5μ testicular transvers section of O . <i>niloticus</i>	
	stained with H&E, control group normal testis 10x	53	
10B	Showing spermatogenesis stage IV in control group sperm-		
	atozoa (SZ) are present and no presence of testis-ova 20x	53	
	10C	General view of spermatogenesis stage II 4x	54
		Photograph of 5μ testicular transvers section of <i>O. niloticus</i>	
	10D	stained with H&E, General view of spermatogenesis early	
		stage III in NP9 treated groups 10x	54
	10E	General view of degenerated testis 20x	55

LIST OF ABBREVIATIONS

Symbol	Meaning	
&	And	
o	Degree	
/	Per	
μ	Micron	
μg	Microgram	
-1	Per	
am	ante meridiem	
Avg	Average	
C	Celsius	
d	Day	
DO	Dissolved oxygen	
EDCs	Endocrine-disrupting chemicals	
EEAA	Egyptian Environmental Affairs Agency	
EPA	Environmental Protection Agency	
EPO	Early perinculeolar oocyte	
Fig.	Figure	
FSH	Follicle stimulating hormone	
g	Gram	
GAFRD	General Authority for fish resources development	
GnRH	Gonadotrophic releasing hormone	
GSI	Gonadosomatic index	
GTH	Gonadotropin	
GTHI	FSH	
GTHII	LH	
H&E	Hematoxylin and eosin	
Нр	Horse power	
HSI	Hepatosomatic index	
Kg	Kilogram(s)	

1	Liter (s)
L	Length
LH	Luteinizing hormone
PO	perinculeolar oocyte
M	Month
m	Meter
m^2	Squared meter
m^3	Cubic meter
mg	Milligram
mm^2	Square millimeter
NH_3	Unionized ammonia
NH_4	Ionized ammonia
NO_3	Nitrate-Nitrogen
NPE or NP9	Nonylphenolethoxylate
OAG	Office of the Auditor General of Canada
OCPs	Organochlorine pesticides
OSPAR	The Convention for the Protection of the marine
OSI AIX	Environment of the North-East Atlantic
PAHs	Polyaromatic compounds
PCBs	Polychlorinated biphenyls
pН	Hydrogen ions concentration
Pm	Post meridiem.
PPb	Part per billion
Spp.	Species
TO	Testes-ova
VTG	Vitellogenin
WHO	World health organization
WWF	World Wildlife Fund
YVO	Yolk vesicle oocyte
ZRP	Zona radiate protein