

FACTORS INFLUENCING THE TOXICITY OF CERTAIN INSECTICIDES AGAINST THE COTTON LEAFWORM, SPODOPTERA LITTORALIS, BOISD

By By

RAAFAT ABD EL-MONEIM HAFEZ KHALID

B.Sc. (Entomology)
M.Sc. (Insecticides)

TYM

THESIS

Submitted in Partial Fulfilment for the Requirements for the Degree of

DOCTOR OF PHILOSOPHY

in

Insecticides

3729

Faculty of Agriculture Ain Shams University

1970

APPROVAL SHEET

TOXICITY OF CHREAT. FACTORS INFLUE CING THE INSECTICIDES AGAINST THE COTTON LEAFWORM, SPODOPTERA LITTORALIS, BOISD

This Thesis for Ph.D. Degree has been Approved by : - Harmond Ce

Committee in Charge

Date: 11 / 3 / 1970.

...00000...

ACKBOWLEDGMENT

The writer wishes to express his deep appreciation to Dr. M.M. Zaki, the Governer of Sohag, to Dr. M.R. Abou El-Ghar, Prof. of Insecticides, Plant Protection Department, Faculty of Agric., Ain Shams Univ. and to Dr. M.S. El-Rafie Associate Prof. of the same Institute for suggesting the problems, supervising, help, advice and encouragement they kindly offered throughout the course of this work.

...00000...

$\underline{\text{C} \ \text{O} \ \text{M}} \ \underline{\text{T} \ \text{E} \ \text{N} \ \text{T} \ \text{S}}$

	Page
TRODUCTION	
PART I	
REVIEW OF LITERATURE	3
I) Effect of temperature on the efficience insecticides	
II) Effect of humidity on the efficience insecticides	
III) Effect of synergists on the efficient insecticides:	ency of
 Botanical insecticides Chlorinated hydrocarbons Organophosphorus insecticides 	13
PART II	
MATERIALS AND METHODS	22
l) Experimental design	22
2) Chemical definitions and properties tested compounds:	s of the
A) Insecticides	
3) Technique of application	27
4) Mortality tests	28
A) Resring technique of insects B) Mortality counts	
5) Absorption tests:	
A) Extraction and cleanup 1. Review of literature 2. Procedure used	29

		1000
6)	Chemical determination:	
	1. Colorimetric procedure	34 35
	PART III	
RESULTS	AND FINDINGS	39
I)	Effect of temperature on the relative efficiency of Bidrin and Dursban against the fourth instar larvae of the cotton leaf-	
	worm	39
	i) Effect of temperature on the efficiency of various rates of application of each of Bidrin and Dursban	41
	i) Mortality testsii) Absorption of toxicantsiii) Cholinesterase inhibition	43 43 45
	<pre>ii) Effect of temperature on the efficiency of Bidrin and Dursban under various humidity</pre>	46
	i) Mortality tests	48 49 49
II)	Effect of relative humidity on the efficiency of Bidrin and Dursban against the fourth instar larvae of the cotton leaf-worm	51
	i) Effect of relative humidity on the efficiency of various rates of applica- ation of each of Bidrin and Dursban .	5 3
	i) Mortality tests	55 56 56
	ii) Effect of relative humidity on the efficiency of Bidrin and Dursban under various degrees of post-treat- ment temperature	57
	i) Mortality tests	58 58 59

		ĒΘ <u>a</u> ∈
III)	The combined effect of temperature and relative humidity on the efficiency of various rates of application of each of Bidrin and Dursban	61
	i) Mortality tests	61 67 73
IV)	Effect of certain synergists on the toxicity of Bidrin against the cotton leafworm	80
	 i) Effect of Bidrin on the fourth instar larvae of the cotton leafworm ii) Relative efficiency of the tested synergist on the toxicity of Bidrin against 	80
	the cotton lesfworm	82
	 Effect of the synergist ratio on the toxicity of Bidrin Effect of post-treatment temper- 	84
	 ature on the efficiency of the tested synergists	87
	synergist combinations `	89
	gist combinations at various post-treatment temperatures 5) Effect of the synergist ratio on the efficiency of various doses	91
	of Bidrin	9 5
	ious doses of Bidrin/synergist combinations	99
v)	Effect of certain synergists on the rate of absorption of Bidrin through the cuticle of the cotton leafworm larvae	102
	i) The rate of absorption of Bidrin through the cuticle of the larvae	102
	ii) The relative efficiency of the tested synergists on the rate of absorption of Ridrin by cotton leafworm larvae	104

]	Affect of the synergist ratio of the rate of absorption of Bidria.	.i
	2)	Effect of post-treatment temperature on the efficiency of syncergists on the rate of absorption of Bidrin by the Cotton leafworm.	108-
	3)	Effect of the insecticidal dose on the efficiency of synergists on the rate of absorption of Bidrin by the cotton leafworm	110
	4)	Effect of the synergist ratio at various post-treatment temper- atures on the rate of absorption of Bidrin	112
	5)	Effect of the synergist ratio with various insecticidal doses on the rate of absorption of Bidrin	116
	6)	Effect of post-treatment temper- ature and the insecticidal dose on the action of synergist on the rate of absorption of Bidrin	119
VI)	Effect of esterase	synergists on the rate of cholin-inhibition by Bidrin	123
	by B	rate of cholinesterase inhibition idrin	123
	the : eras	tive efficiency of synergists on rate of inhibition of cholinest- e by Bidrin	1 23
	1)	The effect of synergist ratio on the rate of cholinesterase inhib- ition by Bidrin	126
	2)	Effect of post-treatment temperature on the rate of cholinest-erase inhibition by Bidrin/synergist combinations	128
	3)	Effect of the insecticidal dose on the efficiency of Bidrin/syner-gist combinations	130

		Page
4) Effect of the synergist ratio at various post-treatment temperatures on the rate of inhibition of cholinesterase by Bidrin	132
5) Effect of the synergist ratio with various insecticidal doses on the rate of cholinesterase inhibition by Bidrin	136
6) Effect of post-treatment temperatures and the insecticidal dose on the ratio of synergist on the rate of cholinesterase inhibition by Bidrin	141
SUMMARY AN	D DISCUSSION	146
REFERENCES	••••••	167
ARABIC SUM	MARY.	

...00000...

INARODUCTION

The cotton leafworm, Spodoptera littoralis Boisd (<u>Prodenia litura</u>, F.) is no doubt the principal and the most important economic cotton pest in U.A.R. causing in some seasons serious damage in spite of the big effort made to control it.

The cheif method of control up till now, is hand picking of egg masses. This method could be considered as a practical and successful mean of control especially in normal years of infestation. However, in cases of severe infestation, hatching might take place and the method for egemical control becomes of vital importance.

Following the large scale application of the new synthetic insecticides against the cotton leafworm in Egypt, different problems started to appear. Amongst these problems is the failure in some cases of chemical control attributed to the variations of temperature and humidity.

It was thus the purpose of the present investigation evaluating the effect of these factors on certain modern insecticides suggested for controlling the cotton

leafworm. Moreover, the possibility of synergizing these insecticides was another sepect of this research which may permit more economical control of pests.

Such information will no doubt assist in the chemical control of the principal and most important cotton pest in U.A.R.

PART I

ij.

REVIEW OF LITERATURE

I) Effect of Temperature on the Toxicity of Insecticides:

Hartzell and Wilcoxon 1932, sprayed the rose chafer adults, Macrodactylus subspinosus F., with pyrethrum. They suggested that if the insects received a dose insufficient to kill, recovery at higher temperature was more rapid but if on the other hand, the dose was lethal, death occurred more rapidly at higher temperatures.

Craufurd 1938, found that the rate of toxicity of derris to Ahasverus advena, Watt. was regularly increased with the increase of temperature during treatment. He also found that the insects bred at 20°C. under the same conditions after treatment showed higher susceptability than those bred and kept after treatment at 25°C. under similar percent relative humidity of 76%.

Shepard 1939, stated that temperature was highly important in determining the effectiveness of a fumigant. Volatility increased whereas surface adsorption decreased with raising temperatures.

Ellisor and Blair 1940, showed that lead arsenate,

basic coper arsenate and calcium arsenate were more toxic to velvet been caterpillar, Anticarsia gommatilis Ebm., and the southern armyworm, Prodenia eridenia Hbm., at 60°F. than at 80°F., while synthetic cryolite gave the same M.L.D. at the two temperatures used.

706 g of

Eagleson 1942, described the effect of temperature on the recovery of houseflies from knockdown effect due to the toxic effect of pyrethrum and lethane (p-butoxy-B-thiocyanodiethyl ether) and showed that the percentage of recovery increased regularly with the increase of temperature from 22°C to 38°C.

Harries et al. 1945, studied the insecticidal action of pyrethrum extracts on the beat leafhopper Eutettia tenellus, Bak. and found that higher toxicity obtained with higher temperatures during spraying and with lower temperature after spraying. When the same temperature was maintained during and after the spraying, the resultant effects was a higher kill at lower temperature.

Lindquist and Wilson 1945, showed that the knock-down with rise of temperature was slower in the case of house flies exposed to DDT and faster in the case of house flies exposed to pyrethrum and mosquitoes and bed bugs exposed to DDT.

David 1946, found that a 10°C. drop in comperature reduced the observed kill by about 20 per cent who adults of Aedes aegypti were treated with pyrethrum.

Potter and Gillham 1946, found that both pyrethrum and rotenone were more toxic to honey bees, Apis melifera as contact poisons at 20°C. than at 34.5°C., but
the reverse was observed with nicotine. They concluded
that the increase in toxicity under cool conditions after
treatment was due to the physiological conditions of the
insect at these temperature rather than to the effect of
temperatures on the poison or the diluents.

Gaines and Dean 1949, investigated the effect of temperature and humidity on the toxicity of certain insecticides on the boll weevils, Anthonomus grandis Both. The toxicity of calcium arsenate remained nearly the same under all temperatures. The toxicity of DDT and Chlordane reduced by high temperature. While high temperature and high relative humidity has less effect on the toxicity of toxaphene than of the other insecticides tested.

Hoffman and Lindquist 1949a, examined the effect of temperature on the residual effect of several chlorinated hydrocarbons on house flies. They reported that DDT and Methoxychlor caused greater mortality at low temperature than at high temperature, while the reverse was true

with Heptachlor, Parathion, Chlordane, Dieldrin and toxaphene.

Hoffman et al. 1949 b, showed that more ticks were killed at 70°F. than at 90°F. when exposed to wool troated with DDT, Methoxychlor and dichlorodiphenyl dichloroethane, while the reverse was true with toxaphene, BHC and Chlordane.

..... L.

Guthrie 1950, showed that DDT, pyrethrins end Lindane topically applied to the German cockrosches were more toxic at the lower temperature, while the reverse was true with Aldrin and Disldrin. They added that temperature had the greatest effect on the toxicity of DDT, while the effect on the other compounds was considerably less.

Woodruff 1950, reported that nicotine and rotenone injected into nymphs and adults of Milkweed, showed increasing mortality with corresponding increase in temperature up to 29°C. while DDT produced a positive temperature coefficient between 10° and 25°C, and a negative temperature coefficient between 22° and 29°C.

Vinson and Kearns 1952, reported that both of the topical and injected doses of DDT on the female American cockroaches showed negative temperature coefficients between 15° and 35°C.