Ain Shams University Faculty of Engineering

STABILITY OF THREE DIMENSIONAL STRUCTURES UNDER DYNAMIC LOADS

A THESIS

Submitted in Partial Fulfillment of the Requirement for the Degree of Master of Science in Civil Engineering (Structural)

مار مار والمار المار والمار و

 $\mathcal{B}\mathcal{Y}$

Eng. BAHI FATHI AMIN ABD-ALLA

624.171 B. F

SUPERVISED BY

51152

Prof. Dr. HASSAN AHMED OSMAN Prof. Dr. MAHMOUD I. EL BANNA

Professor of Steel in Structural

Engineering Department

Ain Shams University

Professor of Steel in Structural

Engineering Department

Ain Shams University

Dr. MOHAMED SALAH SOLIMAN

Associate Prof. of Structural

Engineering

Zagazig University

(Shoubra)

Dr. MOHAMED NOOR FAYED

Associate Prof. of Structural

Engineering

Ain Shams University

EXAMINERS COMMITTEE

Name, Title & Affiliation

Signature

1. Prof. Dr. KAMAL HASSAN MOHAMED

Professor of steel in Structural

Engineering Department

Faculty of Engineering,

Ain Shams University.

2. Prof. Dr. HASSAN ABD ELAZIZ ARIBA . Hassan ...

Professor of steel in Structural

Engineering Department

Faculty of Engineering,

Cairo University.

3. Prof. Dr. HASSAN A. OSMAN (supervisor)

Professor of steel in Structural

Engineering Department

Faculty of Engineering,

Ain Shams University.

STATEMENT

This thesis is submitted to Ain Shams University for the Degree of

Master of Science in Structural Engineering.

The work included in this thesis was carried out by the auther in the

department of Structural Engineering, Ain Shams University, from Oct.

1984 to May 1994.

No part of this thesis has been submitted for a degree or a

qualification at any other University or Institute except when due reference

is made in text of thesis.

Date:

Signature:

Name: BAHI FATHI AMIN

ii

INFORMATION ABOUT THE RESEARCHER

Name : BAHI FATHI AMIN ABD ALLA

Date of Birth : 20/6/1960

Place of Birth : Cairo

Qualification: B. Sc. Degree (Civil Engineering

Department, Structural Section) 1983. General grade was very good with honour degree and the project was distinction (Metallic structures). Faculty of Engineering,

Ain Shams University.

Current Job : Demonstrator in Faculty of Engineering

(Shoubra), Banha branch, Zagazig

University.

ACKNOWLEDGMENTS

The auther would like to express his gratitude to Professor Dr. HASSAN AHMED OSMAN professor of steel in structural engineering department, Ain Shams University, for his help, encouragement, support and guidance. Through his guidance he has always set the example of a true educator.

The auther is greatly indebted to Professor Dr. MAHMOUD IBRAHIM EL BANNA. professor of steel in structural engineering department, Ain Shams University, for his kind, cooperation and guidance.

The auther would like to express his appreciation to Dr. MOHAMED SALAH ABD ELAZIZ SOLIMAN, Associate Professor of steel in structural engineering department, Faculty of engineering, Shoubra, Banha branch, Zagazig University, for his valuable help and cooperation.

The auther would like to express his appreciation to Dr. MOHAMED NOOR FAYED, Associate Professor of steel in structural engineering department, Ain Shams University, for his valuable proposals, encouragement and precise advice during his direct and continuous supervision throughout the world.

LIST OF CONTENTS

			Page
EXAN	/INI	ERS COMMITTEE	i
STAT	EM.	ENT	ü
INFO	RM	ATION ABOUT THE RESEARCHER	iii
ACKI	VOV	VLEDGEMENTS	iv
LIST	OF	CONTENTS	v
LIST	OF	FIGURES	vii
CHAI	TEI	R 1: INTRODUCTION	1
	1.1	Background	1
	1.2	The Present Approach	2
	1.3	Object of The Work	3
	1.4	Thesis Organization	4
СНАІ	ΤΕΙ	R2: FINITE ELEMENT FORMULATION	6
	2.1	Introduction	6
	2.2	Finite Element Modeling	8
		2.2.1 The Plate Finite Element	8
		2.2.2 The Beam Finite Element	12
	2.3	Element Constitutive Equations	15
		2.3.1 Isotropic Plates	15
		2.3.2 Beams	20
	2.4	Numerical Integration	26
CHAPTER 3: NONLINEAR DYNAMIC ANALYSIS			
		METHOD	32

3.1	Introduction	32
3.2	The Governing Finite Element Equations	32
3.3	Numerical Method of Solution	35
	3.3.1 Solution of Dynamic Equations	35
	3.3.2 Critical Buckling Load Approach	38
3.4	Comparative Examples	39
CHAPT	ER 4: STABILITY OF DIFFERENT STRUCTURES	
	UNDER DYNAMIC LOADS	79
4.1	Introduction	79
4.2	Example (1): Steel Portal Frame	79
4.3	3 Example (2): Fixed Shallow Arch	81
4.4	Example (3): Steel Coped Beam	82
4.5	Example (4): Four Hinged Space Frame	84
CHAPT	ER 5: SUMMARY AND CONCLUSIONS	103
REFER!	ENCES	105
APPENDIX A · COMPUTER PROGRAM LIST		

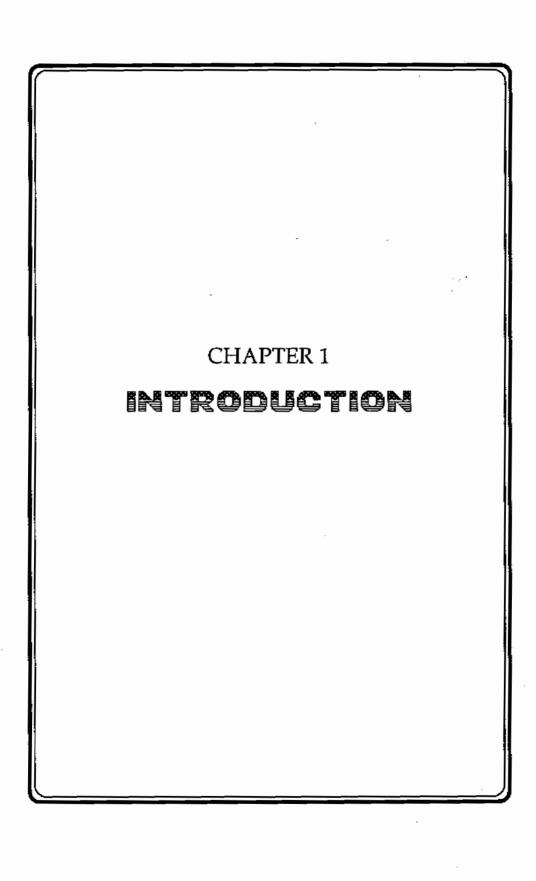

LIST OF FIGURES

Fig.	Title	Page
2.1	The plate element: geometry and nodal displacements	28
2.2	The beam element: geometry and nodal displacements	29
2.3	Numerical integration	30
3.1	Static states of equilibrium and dynamic response under	
	slowly increasing loading; structure with a limit point	
	unstable and stable segments of static post-buckling paths	47
3.2	Dynamic nonlinear analysis flowchart	51
3.3	Critical buckling load	52
3.4	Numerical example (1)	53
3.5	Nonlinear dynamic response of node (4) in Z-direction	54
3.6	Numerical example (2)	55
3.7	Nonlinear dynamic response at middle in Z-direction	
	due to gradual load	56
3.8	Nonlinear dynamic response at middle in Z-direction	
	due to constant load	57
3.9	Nonlinear dynamic response of stress at middle due to	
	gradual load	58
3.10	Nonlinear dynamic response of stress at middle due to	
	constant load	59
3.11	The max. translation of the middle node (7) in Z- direction	
	against the axial load	60

3.12	The max. Y-moment of the middle node (1) against the	
	axial load	
3.13	The stiffness curve for elastic and plastic stability of the	
	beam	
3.14	Numerical example (3)	
3.15	Comparison between linear and nonlinear response	
3.16	Nonlinear dynamic response at mid-span (node 2) in VI.	
	direction due to constant load	
3.17	The gradually applied loads with the same time step	
3.18	Nonlinear dynamic response at mid-span (node 2) in V1.	
	direction due to gradual load	
3.19	Effect of gradually applied load with a specified time	
	length	
3.20	Numerical example (4)	
3.21	Nonlinear dynamic response at midpoint in VI. direction	
	due to constant load	
3.22	Nonlinear dynamic response at midpoint in VI. direction	
	due to gradual load	
3.23	Nonlinear dynamic response of Y-moment at midpoint	
	due to constant load	
3.24	Nonlinear dynamic response of Y-moment at midpoint	
	due to gradual load	
3.25	The max. vertical elastic and plastic response against the	
	constant and gradual load	
3.26	The max. elastic and plastic Y-moment at mid span against	
	the constant and gradual load	

3.27	Numerical example (5)	74
3.28	Nonlinear dynamic response of the free end in Z-direction	
	due to constant load	75
3.29	Nonlinear dynamic response of moment at fixed end due	
	to gradual load	76
3.30	Elastic and plastic dynamic response of the free end in	
	Z-direction due to gradual load	77
3.31	Elastic and plastic dynamic response of moment at fixed	
	end due to gradual load	77
3.32	The max. vertical elastic and plastic response against the	
	constant and gradual load	78
3.33	The max. elastic and plastic Y-moment at fixed end	
	against the constant and gradual load	78
4.1	Numerical example (1)	86
4.2	Nonlinear dynamic response of joint (3) in X - direction	87
4.3	Nonlinear dynamic response of joint (3) in Z - direction	88
4.4	The max. X - translation of node (3) against the vertical	
	load	89
4.5	The stiffness curve for constant and gradual load	89
4.6	Numerical example (2)	90
4.7	Nonlinear elastric dynamic response at appex (1) in	
	Y-direction	91
4.8	The max. vertical displacements at appex (1) against the	
	applied load	92
4.9	Finite element idealization of example (3)	93

4.10	Nonlinear elastric dynamic response of midpoint (31) in	
	Y-direction	94
4.11	Nonlinear elastric dynamic response of midpoint (31) in	
	Z-direction	95
4.12	Nonlinear elastric dynamic moment of midpoint (31) about	
	Y-axis	96
4.13	The max. vertical displacement of node (31) against the	
	gradually applied load	97
4.14	The max. lateral displacement of node (31) against the	
	gradually applied load	97
4.15	The max. Y-moment at node (31) against the gradually	
	applied load	98
4.16	The stiffness curve for coped and uncoped beams	98
4.17	Finite element idealization of example (4)	99
4.18	Nonlinear elastric dynamic response of joint (1) in	
	Z-direction	100
4.19	Nonlinear elastric dynamic response of joint (1)	
	in Y-direction	101
4.20	The max. lateral displacement of node (1) against the	
	applied load	102
4.21	The stiffness curve for elastic dynamic stability of the frame	102

CHAPTER 1

INTRODUCTION

1.1 BACKGROUND

Modern technology requires a more exact knowledge of the structure's behaviour, under severe loading conditions. The cost of a structural failure can be very high in the case of framed buildings, bridges, ... etc.. The nonlinear structural analysis serves the purpose of determining the type of failure and its causes. Using the nonlinear analysis is an important tool, to better understanding of the exact behaviour of the structures.

During the recent years, the possibility of practical static and dynamic nonlinear analysis of structures has progressed substantially due to the effective use of digital computers operating on finite element representations of the structures. To enable general nonlinear analysis, the development of versatile geometric and material nonlinear finite elements is in much need, and along these elements the use of an effective three dimensional beam and plate elements is very important.

The stability of structures under static loading has been the subject of considerable research during the past three decades [1-14]. However, the problem of nonlinear response and stability of these structures under dynamic loads has thus far received only limited attention [15-17]. Although the feasibility of performing nonlinear dynamic analysis of three-dimensional structures has been demonstrated by a number of previous researchers, the nonlinear response and stability of these structures under dynamic effects is not clearly understood, and the literature contains very

limited numerical data on the subject which can be used for design purposes.

The early works in structural mechanics which form the background of this research are in the areas of elastic and plastic analysis of structures and in the theory of stability and buckling. The former subject is summarized in, for example, the book by Hodge [18], while the latter is covered in the books by Timoshenko [19] and Bleich [20]. The theory of post-buckling behaviour of structures and the theory of limit states in the presence of plastic deformations and buckling are relatively newer developments [21, 22]. Significant progress in research in this field has been achieved during the past decade through the use of the finite elements method [23 - 27].

The finite element method [28] has proven to be a versatile method of analysis in the large deflection and elastic or plastic ranges of behaviour of structures with general shape and boundary conditions, including the elastic and plastic nonlinear analysis of beams and plates under both in plane and lateral loadings. Fabrication imperfections, such as residual stresses and deflections, which can have a great influence on the ultimate strength of compression members, can be easily accounted for. It is for these reasons that the finite element method is in widespread use for the buckling, post-buckling and ultimate strength analysis of plates [29 - 34].

1.2 THE PRESENT APPROACH

The basis of the formulation of the problem in this thesis is the Lagrangian continuum description of material bodies specialized to elementary thin plate theory and elementary beam theory. Displacement gradients (rotations) are assumed moderately large to preserve the validity