

च्तान्यंग विव्व

وميا إلا ما علمتنا إنك أنت العليم الحكيم الحكيم المحكيم

STUDY ON THE CHANGES OF BLOOD LIPIDS AND SOME TRACE ELEMENTS IN RENAL DISEASES

Thesis

In Partial Fulfilment of the Requirements for the Degree of M.Sc.
(Biochemistry and Nutrition)

nts Lie College

574.19247 N. M

BY Nora Mohamed Afifi El-Sheikh

Home Economic (Nutrition and Food Chemistry) Ain Shams University 1989 41397

Department of Biochemistry and Nutrition Women's College Ain Shams University

1995

Study on the Changes of Blood Lipids and Some Trace Elements in Renal Diseases

Supervisors

1 - Prof. Dr. Waheed Mohammed El-Said

Prof. of Internal Medicine Faculty of Medicine Ain Shams University

2 - Prof. Dr. Tahany El-Sayed Kholief

Prof. of Biochemistry
Biochemistry and Nutrition Department
Women's College
Ain Shams University

The author passed the following courses:

Advanced Biochemistry

Advanced Nutrition

Applied Statistics

Microbiology

English Language

Approval Sheet

Study on the Changes of Blood Lipids and Some Trace Elements in Renal Diseases

By

Nora Mohamed Afifi El-sheikh

Thesis submitted for the M.Sc. Degree in Biochemistry and Nutrition has been approved by:

Prof. Dr. F. E. Mama of Prof. Dr. Falmy The Prof. Dr. Zahang S. Kholef

committee in charge

Date / /

ACKNOWLEDGMENT

I wish to express my gratefulness to Prof. Dr. Waheed El-Said Professor of Internal Medicine for his support and co-operation throughout the study.

Thanks and gratitude to Prof. Dr. Tahany Kholief Professor of Biochemistry and Nutrition Department, Women's College, Ain Shams University who suggested and supervised this thesis, Her keen interest in the progress of the work is also acknowledged.

Thanks also to Ass. Prof. Mohammed Ibrahim . and to Ass. Prof. Mohammed Abdel Ghani from the Department of Internal Medicine, Faculty of Medicine, Ain Shams University, for their valuable co-operation and kind supply of the samples throughout the study.

Sincere thanks are to Ass. Prof. Shadia Barakat, Physiology Department, and Ass. Prof. Ahmad Essmat Shoman, Community Department, Faculty of Medicine for their encouragement and facilities offered during execution of this work.

My gratitude to Prof. Dr. Nazek Darwish and Prof. Dr. Nazera Afifi, Head of Biochemistry and Nutrition Department for their providing all possible facilities to complete this work. Thanks to all the stuff members of our Department for their sincere help and support.

Thanks to my family, my parents, my husband for their continuos encouragement and help throughout the work.

CONTENTS

	PAGE
INTRODUCTION	I
REVIEW OF LITERATURE	1
Chronic Renal Failure	1
Recommended Diet	4
Serum Creatinine and Blood Urea Nitrogen	7
Protein and Nutritional Abnormalities	8
Vitamins In Dialysis	14
Trace Elements in Dialysis	16
Function and Distribution of Copper	19
Physiology and Metabolism of Copper	20
Biochemistry of Copper	21
Copper Deficiency	23
Function and Distribution of Zinc	25
Physiology and Metabolism of Zinc	27
Zinc in Human Disease	28
Zinc Deficiency	29
Zinc and Hemodialysis	30
Hematologic Abnormalities in Chronic Renal Failure	31
Plasma Lipids	33
Lipoprotein Metabolism	34

PAGE

Lipid Metabolism in Renal Failure	37
Lipid Abnormalities in Dialyzed Patients	39
Lipid Peroxidation and Dialysis	42
Lipoproteins and Coronary Heart Diseases	44
Carbohydrate Metabolism In Renal Failure	46
MATERIAL AND METHODS	47
Subjects	47
Determination of Packed Cell Volume (Haematocrit)	48
Determination of Copper and Zinc in Blood Cells and Plasma	49
Determination of Serum Total Lipids	50
Determination of Serum Cholesterol	51
Determination of Triacylglycerols	53
Determination of Phospholipids	56
Determination of Plasma Lipid Peroxidase	58
Determination of Serum Total Proteins	59
Determination of Serum Albumin	61
Determination of Serum Urea	62
Determination of Serum Creatinine	64
Determination of Serum Lipoproteins	66
Statistical Analysis	67
RESULTS	69
DISCUSSION	93
SUMMARY	116
REFERENCES	119
ARABIC SUMMARY	

LIST OF TABLES

PAGE

Table (1)	Age, Hematocrit value, Red Blood Cells Count, Copper, Zinc in Plasma and in Blood Cells for Normal Controls and Chronic Renal Failure.	70
Table (2)	Age, Duration of dialysis, Haematocrit value, Red Blood Cells Count, copper, zinc in Plasma and in Blood cells for Hemodialyzed Patients Undergoing Twice Weekly.	72
Table (3)	Age, Duration of Dialysis, Copper, Zinc in Plasma and in Blood Cells for Hemodialyzed Patients Undergoing Thrice Weekly.	74
Table (4)	Copper and Zinc in Tap Water, Concentrate Dialysate(inlet and outlet) from ElBakry and Ain Shams University Hospitals.	77
Table (5)	Total lipids, Total cholesterol, Triacylglycerols, Phosphlipids and Malondialdehyde in Serum for Normal Controls and Chronic Renal Failure.	79
Table (6)	Total lipids, Total cholesterol, Triacylglycerols, phosphlipids and Malondialdehyde in Serum for Patients Undergoing Hemodialysis Twice Weekly.	81

Table (7)	Total lipids, Total cholesterol, Triacylglycerols, Phosphlipids and Malondialdehyde in Serum for Patients Undergoing Hemodialysis Thrice Weekly.	84
Table (8)	Total proteins, Albumin, Total globulins, Blood- Urea, Serum creatinine Alpha-, Prebeta- and Beta-lipoprotein for Normal and Chronic Renal Failure.	86
Table (9)	Total proteins, Albumin, Total globulins, Bloodurea, Serum Creatinine, Alpha-, Prebeta- and Beta-lipoprotein for Hemodialyzed Patients Undergoing Twice Weekly.	88
Table (10)	Total proteins, Albumin, Total globulins, Blood- Urea, Serum Creatinine, Alpha-, Prebeta- and Beta-lipoprotein for Hemodialyzed Patients Undergoing Thrice Weekly.	91

LIST OF FIGURES

PAGE

-		
Fig. (1)	Plasma copper , zinc ($\mu g/dl$)and blood copper , zinc ($\mu g/ml$) in normal controls and chronic renal failure .	71
Fig. (2)	Plasma copper , zinc ($\mu g/dl$) and blood copper , zinc ($\mu g/ml$) in normal controls, chronic renal failure and twice weekly dialyzed patients .	73
Fig. (3)	Plasma copper, zinc (µg/dl) and blood copper, zinc (µg/ml) in normal controls, chronic renal failure and thrice weekly dialyzed patients.	75
Fig. (4)	Copper and zinc (mg/l) in tape water, concentrate, dialysate (inlet and outlet) from El-Bakry and Ain Shams university Hospitals.	78
Fig. (5)	Total lipids (mg/dl), total cholesterol (mg/dl), triacylglycerol (mg/dl), phospholipids(mg/dl)and malondialdehyde (µmol/l) for normal controls and chronic renal failure.	80

Fig. (6)	Total lipids(mg/dl),total cholesterol(mg/dl), triacylglycerol (mg/dl), phospholipids (mg/dl) and malondialdehyde (µmol /l) for normal controls, chronic renal failure and twice weekly dialyzed patients.	82
Fig. (7)	Total lipids(mg/dl), total cholesterol (mg/dl), triacylglycerol (mg/dl), phospholipids (mg/dl) and malondialdehyde (µmol/l) for normal controls, chronic renal failure and thrice weekly dialyzed patients.	85
Fig. (8)	Total proteins (g/dl), albumin (g/dl), total globulins (g/dl), blood urea (mg/dl), serum creatinine(mg/dl), alpha-, prebeta- and beta-lipoprotein (%) for normal controls and chronic renal failure.	87
Fig. (9)	Total proteins (g/dl), albumin (g/dl), total globulins(g/dl), blood urea (mg/dl), serum creatinine(mg/dl), alpha-, prebeta- and beta-lipoprotein(%) for normal controls, chronic renal failure and twice weekly dialyzed patients.	89
Fig. (10)	Total proteins (g/dl), albumin (g/dl), total globulins(g/dl), blood urea (mg/dl), serum creatinine(mg/dl), alpha-, prebeta- and beta-lipoprotein(%) for normal controls, chronic renal failure and thrice weekly dialyzed patients.	92

INTRODUCTION	

INTRODUCTION

The cardiovascular system is greatly affected by renal failure. Patients on maintenance hemodialysis have an increased incidence of myocardial infarction cerebrovascular disease, leading to a cardiovascular mortality rate of three times that of age - matched nonuremic controls (Lazarus et al., 1975 and Gurland et al., 1976).

Alteration in blood and tissue concentrations of trace elements in the uremic patients have been extensively investigated over the last few years, particularly those involved in the antioxidant systems i.e. copper, zinc and selenium (Hany et al., 1992).

Hemodialysis is used to compensate deficient renal function in uremic patients. It has been reported that dialysis membranes alter the oxidative metabolism of polynuclear leukocytes (Craddock et al., 1977). The mobilization of the NADPH oxidase system of these cells leads to the formation of free radicals. Increased free radical activity in chronic renal failure with and without dialysis have been reported and proposed to contribute to many pathological conditions among these are atherosclerosis , heart disease, stroke and cancer (Hunter et al., 1985; Ledwozyn et al., 1986 and Marx, 1987).

The major plasma antioxidants appear to be ascorbate , urate , $\alpha\text{-tocopherol}$, albumin-bound bilirubin . Furthermore , transferrin , ceruloplasmin and haptoglobin are considered as preventive plasma