STUDY ON THE EFFECT OF RICKETS ON SKELETAL MUSCLE

Thesis

Submitted in the Fulfilment of Ph. D. Degree Childhood Studies

By

AZZA ALI GABR

(M.B., B. Ch., M. Sc.) (Pediatrics) Institute of Post-graduate Childhood Studies Ain Shams University

Supervisors

31326

618.92922 A.A.

Prof. Dr.

Professor of Pediatrics

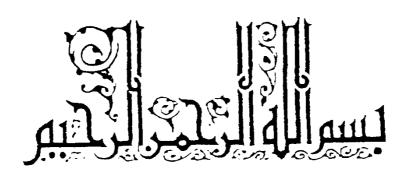
AHMED KOTB

Cairo Unikersity

Prof. Dr. FAWKIA MOURSY

Professor of Physiotherapy
Cairo University

Prof. Dr.


Professor of Biochemistry National Research Centre

SOHAIR SALEM

Prof. Dr. SAADEIA BAHADER

Institute of Post-graduate Childhood Studies Ain Shams University

1990

ACKNOWLEDGEMENT

I would like to express my thanks to professor Dr.

Ahmed Kotb, Professor of pediatrics, Cairo University, for his valuable advice and kind supervision.

I gratefully represent my thanks to professor Dr. Sohair Salem, Professor of biochemistry, National Research Center for her valuable technical guidance and kind supervision which made it possible for me to fulfil this work.

My deep thanks to professor Dr. Saadia M. Bahader, professor of developmental psychology, Institute of post-graduate childhood studies, Ain Shams University, for her kind advice and valuable suggestions which helped me to complete the work.

I also express my appreciation to professor Dr. Fawkia Moursy, professor of physictherapy, Cairc University for her great help in the technical part of the work.

I express my deep thanks to Dr. Salwa El-Husseiny, Ass. Professor of biochemistry National Pesearch Center for her kind and great support.

My thanks to professor Dr. Mohamed Hassan, Professor of Public Health, Cairo University for his effort in the statistical analysis of the results.

Last, but not least, I would like to thank all the staff members of the child Health Laboratory, National Research Center to whom I owe much in performing this work.

CONTENTS

					Page
List	of	Ab	breviati	ons.	i
List	of	Fi	gures		ii
List	of	Tai	bles		iv
I.	IN.	PRO	DUCTION	* * * * * * * * * * * * * * * * * * * *	1
II.				ERATURE	3
				D	3
			II.1.a.	Sources of vitamin D	3
				Metabolism of vitamin D	4
			II.1.c.	Metabolic fate and excretion	8
			II.1.d.	Circulating vitamin D metabolites .	9
				25 - hydroxy vitamin D	11 13 25 27
			II.1.e.	Actions of vitamin D	27
			II.1.f.	Mechanism of regulation of vitamin D hydroxylases	40
	II.	2.	SERUM EI MUSCLE I	NZYMES RELATED TO BONE AND METABOLISM	42
			II.2.a 1	Alkaline phosphatase	42
			II.2.b.	Creatine phosphokinase	46
			II.2.c.	Lactate dehydrogenase	48
			II.2.d.	Aldolase	50
	II.	3.	RICKETS	••••••	51
			II.3.a.	Classification	52
			II.3.b.	Vitamin D deficiency rickets	53
			II.3.c.	Metabolic bone disease of prematurity	72
			II.3.d.	Adolescent Asian rickets	76
			II.3.e.	Rickets due to malabsorption	77

CONTENTS (Cont.)

		Page
	II.3.f. Rickets in hepatic diseases	77
	II.3.g. Rickets due to renal glomerular destruction	78
	<pre>II.3.h. Rickets in patients on</pre>	79
	II.3.i. Vitamin D dependent rickets	80
	<pre>II.3.j. Familial hypophosphatemic rickets .</pre>	81
	II.3.k. Fanconi syndrome	83
	II.3.1. Hypophosphatasia	84
	II.3.m. Vitamin D Toxicity	85
	II.4. ELECTROMYOGRAPHY (EMG)	87
III.	MATERIAL AND METHODS	89
IV.	RESULTS AND DISCUSSION	100
v.	SUMAMRY AND CONCLUSION	167
	REFERENCES	173
	ARABIC SUMMARY	

ABBREVIATIONS

25-OHD : 25-hydroxy vitamin D

1,25 (OH)2D: 1,25-dihydroxy vitamin D

24,25 (OH)₂D: 24,25-dihyroxy vitamin D

25,26 (OH)₂D: 25,26-dihydroxy vitamin D

Ca : Calcium

P : Phosphorus

AP : Alkaline phosphatase

CPK : Creatine phosphokinase

LDH : Lactate dehydrogenase

Ca BP : Calcium binding protein

DBP : Vitamin D binding protein

PTH : Parathormone

ECF : Extracellular fluid

SD : Standard deviation

UV : Ultraviolet

Wt/age : Weight per age

L/age : Length per age

Wt/L² : Weight per length²

HC/age : Head circumference per age

CC/age : Chest circumference per age

H/C : Head per chest ratio

LIST OF FIGURES

					Page
-	II.1.(b)	Fig.	(1):	The mechanism of 25-hydroxylation of vitamin D ₃ to produce 25-OHD ₃ by hepatic microsomes	
	II.1.(b)	Fig.	(2):	Mechanism of 1 a-hydroxylation of 25-OHD3 by chick kidney mitochondria	6
-	II.1.(d)	Fig.	(3):	The known metabolism of vitamin D ₃	10
-	II.1.(e)	Fig.	(4):	A model of a columnar epithelial cell from the gut depicting the variety of effects 1,25 (OH) ₂ D exerts on the cell	
-	IV.1.	Fig.	(1):	Mean (± SD) of percentage weight / age of the studied groups	107
-	IV.1.	Fig.	(2):	Mean (± SD) of percentage length/age of the studied groups	110
-	IV.1.	Fig.	(3):	Mean (± SD) of percentage head circumference/age of the studied groups	112
-	IV.1.	Pig.	(4):	Mean (± SD) of percentage chest circumference/age of the studied groups	114
-	IV.2.	Fig.	(1):	Mean (± SD) social score of the studied groups	121
-	IV.2.	Fig.	(2):	Correlation between social score and percentage weight/age	122
-	IV.2.	Fig.	(3):	Correlation between social score and percentage length/age	123
-	IV.2.	Fig.	(4):	Correlation between social score and percentage weight/length ²	124
-	IV.2.	Fig.	(5):	Correlation between social score and percentage chest circumference/age	125
	IV.4.(a)	Fig.	(1):	Mean (± SD) of serum phosphorus levels of the studied groups	135
-	IV.4.(a)	Fig.	(2):	Correlation between serum phosphorus and calcium levels in all groups	137

LIST OF FIGURES (Cont.)

				Ī	Page
-	IV.4.(a)	Fig.	(3):	Correlation between serum phosphorus and alkaline phosphatase levels in all groups .	138
-	IV.4.(a)	Fig.	(4):	Correlation between serum phosphorus and aldolase levels in all groups	139
-	IV.4.(a)	Fig.	(5):	Correlation between serum phosphorus and 25-OHD levels in all groups	140
-	IV.4.(b)	Fig.	(6):	Mean (±SD) of serum calcium levels of the studied groups	142
-	IV.4.(b)	Fig.	(7):	Correlation between serum 25-OHD and calcium levels in all groups .	143
-	IV.4.(c)	Fig.	(8):	Mean (± SD) of serum alkaline phosphatase levels of the studied groups	145
-	IV.4.(c)	Fig.	(9):	Correlation between serum 25-OHD and alkaline phosphatase levels in all groups	146
-	IV.5.	Fig.	(1):	Mean (± SD) serum creatine phosphokinase levels of the studied groups	151
-	IV.5.	Fig.	(2):	Mean (±SD) of serum lactate dehydrogenase levels of the studied groups	1 5 3
-	IV.5.	Fig.	(3):	Mean (± SD) serum levels of aldolase of the studied groups	155
-	IV.6.(a)	Fig.	(1):	Mean (± SD) serum levels of 25-OHD in the studied groups	1 6 3
-	IV.6.(b)	Fig.	(2):	Mean (± SD) serum levels of 1,25 (OH) ₂ D in the studied groups	166

LIST OF TABLES

					Page
-	IV.1.	Table	(1):	Mean age of the studied groups. Statistical comparison between the groups	l
-	IV.1.	Table	(2):	Percentage weight/age of the studied groups, statistical comparison between the groups	
-	IV.1.	Tabel	(3):	Percentage weight/length ² of the studied groups. Statistical comparison between the groups	
-	IV.1.	Table	(4):	Percentage length/age of the studied groups, statistical comparison between the groups	
-	IV.1.	Tabel	(5):	Percentage head circumference/age of the studied groups. Statistical comparison between the groups	
-	IV.1.	Table	(6):	Percentage chest circumference/age of the studied groups. Statistical comparison between the groups	
-	IV.1.	Table	(7):	Head/Chest ratio of the studied groups. Statistical comparison between the groups	
-	IV.2.	Table	(1):	Social score of the studied groups. Statistical comparison between the groups	120
-	IV.4.(a)	Table	(1):	Serum phosphorus levels of the studied groups. Statistical comparison between the groups	
-	IV.4.(a)	Table	(2):	Statistical correlations between phosphorus and other biochemical parametrs	136
-	IV.4.(b)	Table	(3):	Serum calcium levels of the studied groups. Statistical comparison between the group	141
	IV.4.(C)	Table	(4):	Serum alkaline phosphatase levels of the studied groups. Statistical comparison between the groups	144

LIST OF TABLES (Cont.)

				ra	.ye
-	IV.5.	Table	(1):	Serum creatine phosphokinase levels in the studied groups. Statistical comparison between the groups	.50
-	IV.5.	Table	(2):	Serum lactate dehydrogenase levels in the studied groups. Statistical comparison between the groups	52
-	IV.5.	Table	(3):	Serum aldolase levels in the studied groups. Statistical comparison between the groups 1	54
-	IV.6.(a)	Table	(1):	Serum 25-hydroxy-vitamin D levels in the studied groups. Statistical comparison between the groups	62
-	IV.6.(a)	Table	(2):	Correlations between 25-hydroxy-vitamin D and other biochemical parameters 16	64
-	IV.6.(b)	Table	(3):	Serum 1,25-dihydroxy-vitamin D levels in the studied groups. Statistical comparison between the groups	65

INTRODUCTION

I. INTRODUCTION

Rickets is now recognized as a systemic disease affecting not only bones but also other systems of the body particularly the muscles.

Vitamin D was found to have a specific function in muscle which might, perhaps, be mediated by 25-oHD. (Pointon et al, 1979). Vitamin D depletion has been found to produce a defect in skeletal muscle contraction and relaxation that are dependent on changes in blood mineral composition (Boland, 1985).

Paucity of reports that deal with muscle status of rachitic children encouraged us to study the relationship between vitamin D deficiency and muscle status of the rachitic children. This was accomplished by studying the electromyographic pattern of the rachitic children, serum levels of the enzymes that can be released in excess from injured muscle and serum levels of 25-oHD and 1,25 (oH)2D. Besides, serum levels of alkaline phosphatase, phosphorus and calcium have been measured.

It is well known that vitamin D plays a major role in regulating calcium and phosphorus homeostasis. This function of vitamin D is mediated through its hormonal form $1,25(oH)_2D$ which is 10 times more active than

vitamin D itself and exerts its effect on many organs and tissues of the body (Deluca and Schnoes, 1983).

Studies concerning the levels of 1,25(oH)₂D in nutritional rickets dealt with a limited number of cases. Another aim of this work is to study the serum levels of 1,25(oH)₂D and 25-oHD which are the two most active metabolites of vitamin D in some of the Egyptian rachitic children at different stages of rickets and compare them with changes in serum levels of muscle enzymes, if any.

As rickets is still a prevalent disease in Egypt (Awwaad et al, 1975 & Abd-El-Fattah, and El-Rafie 1977) as well as in tropical and North African countries (Srikantia, 1984), where enough sunshine can be received, we have studied the socioeconomic and environmental conditions of the rachitic children which may participate in the occurrence of rickets in sunny Egypt.

REVIEW of LITERATURE