راق ع

PYROPHOSPHATE AND POLYPHOSPHATES AS SOURCES OF PHOSPHORUS

FOR PLAIM

By

Kemal Mohamed El-Sayid Khalil
B.Sc. Agric. (Soil Science), Ain-Shams Univ., 1971

THESIS

Submitted in Partial Fulfilment of the

Requirements for the Degree of

Master of Agric., Science,

in

Soil Science

Ain Shems University
Faculty of Agriculture
Soils Department

631.41 K. H

1980

APPROVAL SHEET

Name : Kamal Mohamed El-Sayid Khalil

Title: Pyrophosphate and Polyphosphates as Sources

of Phosphorus For Plant.

Thesis Submitted for the Degree

Of

Master of Agric. Science

In

Soil Science

Approved By:

Dr. - Mill= Nesnah.

Dr. MECKEdi

Dr. Abd. El. S. Ismail.

Date / /1980

ACKNOWLEDGEMENT

I would like to express my deepest gratitude to

Dr. Fayer Mady Abdou, Prof. of Soil Science, Dr. Mohamed

El-Nennah, Associate Professor of Soil Chemistry, Soils

Dept., Faculty of Agriculture, Ain Shams University,

and Dr. Massoud A. Massoud, Associate Prof., Atomic Energy

Establishment, for suggesting the problem, guidance, faithful help and precious advice during the study and preparation of this thesis.

Special Thanks are due to Dr. Abd El Samad S.

Ismail for his sincere help.

TABLE OF CONTENTS

•			Page
1-		ODUCTION	1
2-	REVI	EW OF LITERATURE	<u>-</u>
	2-1-	Hydrolysis of condensed phosphates	4
		2-1-1- Effect of temperature on the hydrolysis of condensed phosphates	4
		2-1-2- Effect of soil moisture on the hydrolysis of condensed phosphates	5
		2-1-3- Effect of pH on the hydrolysis of condensed phosphates	5
		2-1-4- Effect of soil chemical properties on the hydrolysis of cordenard	
	2-2-	phosphates	7
2	77.4M-5	phate fertilizers	8
3-	MATER	LLAIS AND METHODS	16
	3-1-	Hydrolysis of pyro- and polyphosphate	16
	3 - 2-	Adsorption of Ortho-, Pyro-, and Meta- phosphate by soils	18
	3-3-	Availability of Ortho-, Pyro-, Poly- and Metaphosphate to alfalfa plants	
	3-4-	Soil characteristics	19
4-	RESUL	TS AND DISCUSSION	21
	4-1-	Hydrolysis of Pyro- and Polyphosphate	24
	4-2-	Adsorption of Ortho-, Pyro- and Letaphos- phate by soils	24
	4-3-	AVAILABILITY of Orthon Para Dala	31
		Metaphosphate to alfalfa plants	32
		4-2-1- Oven- dry weight of alfalfa	34
		4-2-2- Phosphorus uptake by alfalfa	36
_	Avs	4-2-3- The fraction of phosphorus derived from fertilizer	38
5-			48
6-	REFERE	BIVCES	47
-	ARABIC	SIMPLADY	, ,

1- INTRODUCTION

In recent years considerable efforts are being made to develop salts of polyphosphoric acids as phosphatic fertilizers. Since the polyphosphates are more concentrated in phosphorus than orthophosphates they can be transported at less cost per unit of nutrient than orthophosphate-based-fertilizers.

Other advantages attributed to the use of polyphosphate based fertilizers compared with orthophosphate are:
Lower shipping cost per unit of plant food, Less problem of sludge formation in shipping and application equipment,
Ability to incorporate higher concentrations of some micronutrients (Fe, Mn, Zn. & Ca) into liquid fertilizers.

The primary disadvantage of polyphosphates is that they have been more expensive than orthophosphates. The price differential, however, continues to decrease with better technology. Some questions have arisen as to the efficiency of polyphosphate as a plant nutrient. Tests conducted over a variety of soils and crops have shown it to be as effective as orthophosphate as a source of phosphorus to the plant.

While the efficiency of these materials as a source of phosphorus for plants has been evaluated in a number of experiments by Tennessee Valley Authority (Huffman (1968), little information is available on its agronomic performance on Egyptian soils. Thus, the aim of the peresent investigation is to study the following points:

- a) The rate at which condensed phosphates are hydrolyzed in soils, and the effect of soil majisture and
 temperature on its hydrolysis.
- b) The adsorption of condensed phosphates and orthophosphate by selected Egyptian soils.
- c) The effectiveness of condensed phosphate as a plant nutrient course for phosphate as comparing with the orthophosphate fertilines.

2- REVIEW OF LITERATURE

Polyphosphate-based fertilizers are gaining wide acceptance as a source of phosphorus in the fertilization of field crops. Until several years ago, nearly, all the phosphorus used as a plant nutrient was of the orthophosphate type. In the past several years, polyphosphate have received wide publicity and moderate use as a source of P, Hossner and Phillips (1971).

The differences between the orthophosphate and polyphosphates has to do with their chemical structure. Orthophosphate contains only one phosphate atom per molecule. The polyphosphates as represented by pyro-, tri-poly-, and trimetaphosphate, always contain two or more phosphate atoms per molecule.

The value of polyphosphates as an immediate source of phosphorus to plant depend upon its hydrolysis to orthophosphate, and its reaction with soil constituents, Sutton & Larsen (1964) and Sutton et al. (1966).

It was suggested to classify the review to the following points : -

2-1- Hydrolysis of condensed phosphates:

The increasing use of condensed phosphates (polyphosphates) in fertilizers has simulated interest in their behaviour in soils. The value of pyrophosphate as an immediate source of phosphorus is largely dependent on its rate of hydrolysis to orthophosphate. Pyrophosphate and polyphosphate hydrolyze to orthophosphate at variable rates depending on soil, temperature, moisture, pH and biological activity, Blancher & Hossner (1969), Van Wazer (1958) and Fleming (1969).

2-1-1- Effect of temperature on the hydrolysis of condensed phosphates:

Hossner & Phillips (1972) and (1971) reported that the hydrolysis of pyrophosphate increased with increasing temperature. At 35°C the pyrophosphate was completely hydrolyzed after 4 days under flooded conditions, Sutton et al. (1966) reported that hydrolysis of pyrophosphate was slow at 30-35°C. They also stated that the effect of temperature on the pyrophosphate hydrolysis was related to the biological activity of the studied soils. They found that inefficient production of the appropriate

enzyme and low temperature restricted the hydrolysis of pyrophosphate. The same study showed that the increase of soil temperature from 10 to 30°Capproximatly doubled the hydrolysis of pyrophosphate in the soil of lower biological activity.

Hashimoto and Wakefield (1974) reported that the rate of hydrolysis of pyrophosphate is dependent on both temperature and the properties of the soil. They found that the time required for hydrolysis of 50 percent of the pyrophosphate to orthophosphate was 25 to 60 days at 5°C, 4 to 13 days at 25°C, and at temperature between 25 and 40°C, there was a moderate decrease in the rate of hydrolysis.

2-1-2-Effect of soil moisture on the hydrolysis of condensed phosphates:

Many investigators reported that soil moisture affects the hydrolysis of condensed phosphates. Hossner and Phillips (1971) found that when the soil was flooded, hydrolysis was more rapid than at 1/3 atm. moisture content and the hydrolysis of pyrophosphate tended to go to completion. The tendency of hydrolysis not to go

to completion at 1/3 atm. moisture has been shown by other studies, Gilliam & Sample (1968) and Hassner & Melton (1970).

Racz and Savant (1972) suggested that the increase in pyrophosphate activity in the flooded soils may be the reason for the difference which was observed between the hydrolysis in flooded and soil maintained at field capacity moisture content.

2-1-3- Effect of pH on the hydrolysis of condensed phosphate:

An attempt was made by Sutton and Larsen (1964) to correlate the half-life of pyrophosphate in the soil with several soil properties including pH, percent clay and biological activity. They reported that most of the variation in hydrolysis rates could be explained by variations in biological activity and soil pH. As both soil pH and CO₂ evolution increased, the rate of hydrolysis increased. They attributed the pH effect which they observed to a positive correlation between pH and biological activity.

Gilliam and Sample (1968), reported that the rates of hydrolysis of pyrophosphate varied according to the

pH values of these investigated soils. The decreasing of the rate of pyrophosphate hydrolysis was much greater when soil pH was increased to values above pH 7.

Hossner and Melton (1970) found that hydrolysis of pyrophosphate was more rapidly in acid soils than in basic soils, this is in contrast to the results of Sutton and Larsen (1964) who found a positive correlation between hydrolysis rate of pyrophosphate and increasing soil pH.

2-1-4- Effect of soil chemical properties on the hydrolysis of condensed phosphates:

Hossner and Melton (1970) found that soil properties such as mineralogy, clay percent, extractable Al and free iron oxides did not have a noticeable effect on the hydrolysis of applied pyrophosphate. They also treated soils with CaCO₃ and found that CaCO₃ redused the pyrophosphate hydrolysis. The mechanism of CaCO₃ in reducing pyrophosphate in acid soils is unknown.

Hashimoto et al. (1969) suggested that colloided gell and clay minerals catalyze the hydrolysis of pyrophosphate. In very dilute solutions, Kaolinite, Montmorrillonite, and particulary Goethite showed some degree

of this catalytic activity, but gibbsite had no such effect. Racz and Savant (1972) proposed that the pyrophosphate hydrolysis in soil is largely a pyrophosphatase - catalysed reaction. However when pyrophosphate is added to soil it is adsorbed by the soil complex and/ or chemically precipitated. They added that the chemical precipition of the added pyrophosphate decreased its rate of hydrolysis.

2-2- Uptake of phosphorus from condensed phosphate fertilizers:

Although plants have been shown to utilize some condensed phosphates directly, the adsorption of phosphorus from these phosphates is usually as orthophosphate after being following hydrolyzed (Savant and Racz (1972).

The effects of condensed phosphate on final yield of a particular crop will thus be a complex interaction between the rate of hydrolysis in the soil, the time of maximum requirement for phosphate by crops, and the phosphate status of the soil. Sutton and Larsen (1964) determined the availability of pyrophosphate to plant in short-term water-culture experiments and in pot culture. They found that, in soils where the biological activity is not restricted, pyrophosphate did not persist long enough for

hydrolysis. In a soil where pyrophosphate persisted . however, the P-uptake recorded was lower than that from orthophosphate. The same authers (1955) studied the P-uptake by barley from the ortho- and pyrophosphate fertilizers labelled with 32p and observed that uptake of P from pyrophosphate was lower than from orthophosphate. Engelstad and Allen (1971) reported that triammonium pyrophosphate was found to be less effective than monoammonium orthophosphate when both were added as sources of P for corn (Zea mays L.) grown in cool soil (16°C). No differencess was found between these sources when applied to warm soil (24°C). Also, El-Nennah and El-Kadi (1976), determined the availability of pyrophosphate to alfalfa plants as compared with orthophosphate in alluvial and calcareous soils. They found that total P-uptake and Yvalues were lower from pyrophosphate than that from ortho-Besides, the CaCC3 in calcareous soil was not favourable for the availability status of both orthoand pyrophosphate.

On the other hand, Blancher and Hossner (1969) found an equal effect of sodium salts of orthophosphate and pyrophosphate as a P sources for corm. Similar results was found by Gilliam (1970), who reported that

pyrophosphate and orthophosphate solutions were equally effective in supplying P to wheat (Triticum vulgare), corn (Zea mays L.) and barley (Hordeam vulgare L.).

Selke and Ebert (1965) foud that the initial uptake of P by plants was lower from water-soluble condensed phosphates than from dicalcium phosphate (CaHPO₄), this difference almost disappeared as the time was proceeded.

Moreovers Takefuji (1966) found that the effects of potassium polyphosphate as fertilizers on short-term crops such as bush beans and oats were somewhat less than those of superphosphate.

Experiments carried out by Terman and Engelstad (1966) showed that aumonium rolyphosphate (APF) was usually equal to or slightly superior to monoammonium phosphate (MAF) as a source of I. Besides, both (AFF) and aumonium orthophosphate were usually suverior to concentrated superposphate (CPF) and other ordeium phosphates for early arouth response. There was some evidence that APF tends to be a superior source of P on soils having puralues near 7 rather than on soil either much more acid or alkaline. Tanishevskli et al. (1968), found that