

STUDIES ON THE EFFECT OF HIGH DAM ON SOME PROPERTIES OF THE SUSPENDED MATTERS AND SOIL

By

Flamal Ahmed Shalabbi

B. Sc., Agric. (Soil Science), Ain Shams University 1969

THESIS

Submitted in Partial Fulfilment of the Requirements for the Degree

0f

MASTER OF SCIENCE

in

SOIL SCIENCE

2:11.5)

(3) lep

Soils Department
Faculty of Agriculture
Ain Shams University

1977

APPROVAL SHEET

: Kamal Ahmed Saleh Shalabbi Name

: Studies on the effect of high dam on some Title properties of the suspended matters and soil.

Thesis submitted for the degree of

.. S. Y. Melworldy.

3. El Jan-dazne

Master of Science

in

Soil Science

This Thesis has been Approved by:

Date: / /1977

ACKNOWLEDGEMENTS

The author wishes to express his appreciation and deep gratitude to Prof. Dr. hamdi, Prof. Dr. Fayez M. Abdou and Associate Prof. Dr. F. Rabie, Soils Department, Faculty of agriculture, Ain Shams University for suggesting the problem, supervision, guidance and sincere help.

The writer is also indebted to Dr. M.A. ElAbbasseri and Dr. M.S. Heakal for their helpful discussion
while writting the thesis.

The encouragement and Co-operation of the members of the Soils and Water Research Institute are highly appreciated.

\mathbf{C} O N T E N T S

	diels office spille spille stand stand stand stand flows before these dates during being bland	Page
1.	INTRODUCTION	1
2.	REVIEW OF LITERATURE	3
	2-1 General outline 2-2 The alluvial soils of Egypt 2-3 Mineralogy of the clay fraction	3 6 1 2
3.	MATERIALS AND METHODS 3-1 Materials	16 16 31 31 32 33 33
4.	RESULTS AND DISCUSSION 4-1 Suspended matter 4-2 Physical and chemical properties of the studied soils. 4-2-1 Mechanical compsoition. 4-2-2 Calcium carbonate 4-2-3 Organic matter. 4-2-4 Chemical composition of the soil saturation extract	35 35 42 42 42 45
	4-2-5 Exchange characteristics	
	4-3 Mineralogy of the clay fraction	56
5.	SUMMARY	63
6.	REFERENCES	67
	ARABIC SUMMARY.	

--33338--

1- INTRODUCTION

In 1964 the High Aswah Dam, has been constructed through comprehensive plan for the utilization of water resources of the Nile, for horizontal agricultural expansion, the productions of relatively cheap hydro-electric power, the protection against high floods, the improvement of navigation and drainage conditions as well as for the development of fish culture and recreational facilities. Obviously, the basin-irrigated lands of the valley have been converted to the perennial irrigation system. Within very few years, the common problems of irrigated agriculture will come into existence and are now claimed to be perious problems of very high priority for the state.

a trial to determine the nature of soil problems that accompanied the application of the perennial system in the Nile valley. In dealing with this task, the investigation has been restricted to the changes occurred in the chemical, physico-chemical and mineral egical properties of the soil profile. In addition, special attention has been

paid to the recent Nile deposits at the bottom of Lake
Nasser in front of High Dam. Although mineralogical
variations if any, are obviously of a long-term nature,
yet the claymineralogy of the investigated specimens was
also considered.

2- REVIEW OF LITERATURE

2.1. General Outline:

The area under study lies between latitudes 26.5° and 29.0° N and between longitudes 30.5° and 31.5° E.

From the data in table (1) which indicate the temperature, relative humidity and rainfall of such area, it appears that the climate of the Nile Valley is typically continental with hot summers and werm and almost rainless winters.

under consideration, Attia (1954) stated that the Nile Valley began by the river action on a large scale during the Miocene period and completed by the early part of Pliocene. The lower part of the valley to about the latitude of El-Fashn was subsequently invaded by the sea and enlarged before middle Pliocene times. At the bottom of the channel, there are deposits of boulders, gravels, sands and clays, in lenticular form of Plio-Pleistocene age, while on the top the fine sands prevail and are covered by Nile alluvial of recent age.

According to Ball (1938), suspended matter that covers the flat of the Nile Valley and most of the Delta

Table (1) Some meteorological data of the studied area.

station	1946-1960)
meteorological	period
eorc	the
met	HO.
Assuit	(മാരഭമായ
i o	

months													
data of	Jan	Feb.	Mars.	Apr.	May	Jun.	Jul.	Aug?	Sep.	Uct.	Nov.	Dec.	•
Max. Temp. Min. Temp. Daily mean Rainfall mm	20.8 13.9 47	22.8 14.9 6.4 4.2	26.4 16.5 18.4	31.9 14.8 23.3 26	36.7 19.3 28.1 24	37.4 21.0 29.5 28	28.9 22.3 29.9 33	37.1 29.7 35	26.1 27.7 39	20.9 118.0 24.3 4	26.6 12.4 19.3 49	22.4	
		Å	Menia m (means	meteer s of t	meteerological s of the perio		station 1941 - 19	19 60)					
Max. Temp. Win. Temp. Daily mean Rainfall mm	20.6 11.8 0.5	0.45 0.45 0.45 0.45 0.45 0.45	26.06 16.06 16.06 16.06 16.06	25.01 20.08 21.13 4.73	35.2 16.6 28.9 0.7	36.2 18.8 27.5 41	26.0 26.2 28.6 44	26.6 26.4 28.4 4.9	23.8 18.0 55.8 1.0	32.2 16.0 22.2 56.7	26.8 11.6 0.2 60	22.0 7.1 14.0 0.8 62	\$
		5	Bani Su (means	ef of	meteorological the period	ogical s iod 193	station 331 - 1955)	on 1955)					
Max. Temp. Win. Temp. Daily mean Rainfall mm R.H. %	20 20 11: 20 20 20 20 20 20 20 20 20 20 20 20 20	22.6	25. 16.51 52.8 52.8	20.12.62	34.0 16.0 25.6 41	36.0 18.6 27.5 44	28.50	26.2	26.57	27.00 0.00.00 0.14.00	126.9	21.8 1.3.2 7.7 70	

and forms the arable land of A.R.E. has all been deposited by the flood waters of the river in the course of Recent geological period.

The uppermost part of the deposited material, which averages 9,m in thickness is composed of very finely divided minerals with comparatively little admixture of sand and silt fractions. Beneath this accumulation of almost pure Nile mud, there is a considerable thickness of mixed sand and mud, deposited from the river during the transition period between Baleolithic and Neolithic times. Owing to the rising sea-level, the Nile was aggrading its bed and rapidly raising the level of tts flood plain in its northern part.

ball (1938) added that gravels and sands of Pleistocene to Recent ages are to be seen bordering the edge of the cultivated lands in many parts of the Nile Valley, where they form a series of terraces at various heights above the valley floor. His study on these terraces indicates that with the end of Pliocene period, the sea level continued to to fall relatively to the land, and the Nile continued to erode its channel downwards in the Pliocene dediments, until near the end of Pleistocene period.

Although the matter brought down in suspension by the river, some thousands years ago, may differ in composition from that deposited up to the time of High Dam erection, yet some degrees of alteration must undoubtedly have taken place in the soil mineral composition, mainly due to the action of plant-life and percolation of irrigation water. However, several soil forming processes and agencies are also involved in profiles development. The integrated effect of these factors is therefore reflected in soil formation and development.

2.2 The Alluvial Soils of Egypt.

The rich agricultural lands of the Nile Valley and Delta regions have been entirely formed by the deposition of suspended matter carried by the Nile in the past.

Although the Nile is no longer allowed to overflow its banks in Egypt, the soil received annually a minute addition to its thickness by deposition of sediments from the irrigation water that is led over it by canals branched from the river, the thickness is estimated to be about 1 mm /year and this amount is apparently diminished after the High Dam construction.

The parent material from which the suspended matter has originated is the eruptive igneous rocks of the Ethiopian plateau. These rocks which are dominated by the basic igneous rock, basalt, produced the suspended matter through disintigration and weathering sequences.

The hypothesis that all the cultivated land enclosed in the Nile Valley and most of the Delta belongs to the alluvial origin, has for a long time been believed in and taken as the only one. However, investigations concerning the origin of the cultivated lands prove that other agents of soil formation do exist. Along the Eastern and Western fringers some alluvial materials are brought in from the adjoining hills by flash floods, in addition to admixtures of wind blown sands from the desert. Therefore, the processes of soil formation are dominated by the parent material, climate and, to a lesser extent, by man activity, Wahab et al.(1972). It is worthmentioning that the term "climate" here is related mainly to soil climate rather than to the atmposphere, due to the fact that the amounts of irrigation and ground water are taken into consideration.

Most of the northern part of the Delta must have been deposited under the sea or in salt takes cut off from

the sea by sand bars. In these areas, heavy deposits with shells are frequent, and there has been a sorting of soil material by wave and current action, Schoonover et al. (1957)

As to the role of depositional course in controlling the nature of deposited materials, Hurst (1966) stated that about 110 million tons of Nile sediments were carried annually into Egypt by river water. Apart from this amount, about 97 % was carried during the flood period alone while only 3 % passed during the remainder of the year. Aledjam (1930) and Ball (1938) showed that the average amount of suspended matter passing Cairo was at its maximum, 1448 ppm, in August and at its minimum, 68 ppm, in May. After the construction of Aswan Reservoir, these amounts were reduced to 1404 ppm and 21 ppm in September and June respectively, Burns (1907). Recent estimations showed that the amount of suspended matter passing Cairo ranges between 16 and 3034 ppm, Hafez (1962). Obviously, the discrepancy between estimates are due to the differences associated with the nature and intensity of the floods. Depsoition of suspended matter varies accordingly, being 10.3, 3.1 and 0.6 cm. per century on basin lands, and on perennially irrigated lands in the Hile Valley and Delta respectively, Ball (1938) and

Hurst (1966). In this connection, Schoonover et al.(1957) reported that the depth of soil deposits indicates that the age of the cultivated lands of the valley is about 10,000 years, and those of the Delta is less, depending on location.

After the erection of High Dam, the proportions of suspended matter in the Nile water are diminished considerably. In this respect, Mitkees et al. (1972) demonstrated that these proportions are in the range of 15 to 68 ppm versus 21 to 1404 ppm after and before the erection of the Dam respectively. They further added that the variability in such proportions along the year is slight. However, to the writer opinion, this is not true, but only relatively slight if compared with the proportions determined prior to the erection of High Dam.

As deposition of the Nile mud had been taken place under varying conditions of topography and rate of flow, the soils are not uniform in texture. However, as a general statement, soil texture is finer towards the north and also with increasing distances from the river until approaching the interference zones with the Eastern and Western Desert, where coarser fractions increase again, Ball (1938), Abdalla