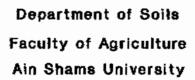
17/49/17

SOME ASPECTS IN THE RECLAMATION OF SANDY CALCAREOUS SOILS

BY USAMA MOHAMED FATHY EL SEDFY

A thesis submitted in partial fulfilment

٥f


the requirements for the degree of

30518

MASTER OF SCIENCE

in

Agriculture (Soil Science)

1990

0

Approval Sheet

SOME ASPECTS IN THE RECLAIMATION OF SANDY CALCAREOUS SOILS

BY

USAMA MOHAMED FATHY EL SEDFY B.SC. (Soils), Cairo University 1979

This thesis for M.Sc. degree has been approved by:

Prof. Dr. Fayez Madi Abdou

Prof. of Soil Science, Ain Shama University

Prof. Dr. Nabil Mohamed El-Mowelhi

Director of Soil and Water Research Institute, ARC, MOA

Prof. Dr. Ahmed Mohamed El-Araby A-El-19 role

Prof. of Soll Science, Ain Shams University

Date of examination: 14_3_1990

SOME ASPECTS IN THE RECLAMATION OF SANDY CALCAREOUS SOILS

BY

USAMA MOHAMED FATHY EL SEDFY

B. Sc. (Soils), Cairo University 1979

Under the Supervision of :

Prof. Dr. Ahmed Mohamed El-Araby -----
Prof. of Soil Science, Ain Shams University

Dr. Ahmed Abdel Fatah Ibrahim -----
Assoc. Prof. of Soil Science, Ain Shams University

Prof. Dr. Mahmoud El-Mansi El-Shal ----
Chief Soil Researcher, Soil and Water Research institute, ARC. MOA.

Abstract

This work aimed to study some aspects in the reclamation of sandy calcareous soils. El-Gabal El-Asfar Farm was selected for this study. Six soil profiles were selected to represent soil irrigated with sewage water for about 0, 10, 20, 30, 40 and 50 years. They were morphologically described in the field. Soil samples were analyzed for some physical and chemical properties, total and available contents of Mn, Cu, Zn, Cd, Pb,

Ni and Co. Also, available B was determined in these samples. Twelve water samples were taken in four different seasons. These samples were analyzed for chemical analysis and soluble contents of Mn, Cu, Zn, Cd, Pb, Ni, Co and B. Samples of mandarin, orange and lemon were collected from plants grown on different locations where soil samples were collected. These samples included leaves and fruits. These were analyzed for total contents of Mn, Cu, Zn, Cd, Pb, Ni, Co and B.

The obtained results can be summarized in the following points:

- 1- The concentrations of Mn, Cu, Zn, Cd, Pb, Ni, Co and B. in irrigation water samples were lower than the maximum permissible limits.
- 2- CaCO₃ content was only traces in the surface layers of studied profiles at any time of receiving sewage water for irrigation.
- 3- The organic matter content in the top soil layers increased with the time of sewage water application.
- 4- The highest values of total Mn content was in the 5 10 cm layer under different times of sewage water applications.

- 5- Copper and Zn contents accumulated in the surface soil layers in an available form.
- 6- The depth of pulluted layer with lead increased by time of sewage water application.
- 7- Nickel and Co contents accumulated mostly in unavailable form.
- 8- Increasing years of application did not produce any accumulation of heavy metals in all parts of citrus trees.

ACKNOWLEDGEMENT

The author is indebted and wishes to express his deepest gratitude and appreciation to Prof. Dr. Ahmed Mohamed El-Araby Professor of Soil Science, and Dr. Ahmed Abdel-El Fatah Ibrahim, associate Prof. of Plant nutrition, Soil Science Department Faculty of Agriculture, University of Ain Shams for Suggesting the problem, careful supervision and valuable help.

The author also wishes to express his deepest appreciation to Prof. Dr. Mahmoud El-Mansi El-Shal, Chief Soil Researcher, Soil and Water Research Institute, Agricultural Research Center for his continuous interest throughout the work.

Thanks are also presented to the Staff Members of Sandy and Calcarenous Soils Section, Soil and Water Research Institute, as well as to the Staff Members of Soil Science Department, Faculty of Agriculture, Ain-Shams University, for the Facilities offered.

CONTENTS

	Page
1. INTRODUCTION	1
2. REVIEW OF LITERATURE	3
2.1. Effect of sewage water application on some	
soil characteristics	6
2.2. Effect of sewage water on heavy metals	
accumulation in soil	8
2.3. Heavy metals content in the plants	10
3. MATERIALS AND METHODS	14
3.1. Soil sampling	14
3.2. Sewage water sampling	15
3.3. Plant sampling	15
3.4. Soil analysis	15
4. RESULTS AND DISSCUSSION	18
4.1. The chemical composition of sewage water	
of El-Gabal El-Asfar farm	18
4.2. Effect of sewage water application on some	
soil physical properties	28
4.3. Effect of sewage water application on some	
chemical properties of soils	34
4.4. Effect of sewage water on heavy metals	
accumulation in soil	39
4.5. Heavy metals content in the plants	61
SUMMARY	68
DEDDODUCES	77

LIST OF TABLES

		Page
1-	Chemical analysis of untreated and treated sewage water at different times of sampling	20
2-	Boron and heavy metals content of untreated and treated sewage water at different times of sampling	21
3-	Mechanical analysis of soil samples at different depths representing at the different periods of cultivation	33
4	Chemical analysis of the soil paste extract of the different samples at different depths and periods of cultivation	38
5-	Total and DTPA - extractable Mn in soils irrigated with sewage effluent for different years	41
6–	Total and DTPA - extractable Cu in soils irrigated with sewage effluent for different years	44
7–	Total and DTPA - extractable Zn in soils irrigated with sewage effluent for different years	47
8-	Total and DTPA - extractable Cd in soils irrigated with sewage effluent for different years	50
9-	Total and DTPA-extractable Pb in soils irrigated with sewage effluent for different years	54
10-	Total and DTPA-extractable Ni in soils irrigated with sewage effluent for different years	5 7
11-	Total and DTPA-extractable Co in soils irrigated with sewage effluent for different years	60
	Available Boron (B) in soils irrigated with sewage effluent for different years	62

		Page
13-	Boron and heavy metals concentrations (ug/g) in Mandarin; orange and lemon grown on soils	
	irrigated with sewage water for different	
	AIN SHAMS UNIVERSITY	66

LIST OF FIGURES

		<u>Page</u>
1 -	The effect of different years of application on clay content at soil depths	. 30
2 -	The effect of different years of application on $CaCo_3$ % at soil depths	. 31
3 -	The effect of different years of application on 0.M % at soil depths	. 32
4 -	The effect of different years of application on pH at soil depths	. 36
5 –	The effect of different years of application on CEC at soil depths	. 37
6 -	The effect of different years of application on total and available (Mn) at soil depths	. 40
7 -	The effect of different years of application on total and available (Cu) at soil depths	. 43
8 -	The effect of different years of application on total and available (Zn) at soil depths	. 46
9 -	The effect of different years of application on total and available (Cd) at soil depths	. 49
10-	The effect of different years of application on total and available (Pb) at soil depths	. 53
11-	The effect of different years of application on total and available (Ni) at soil depths	. 56
12-	The effect of different years of application on total and available (Co) at soil depths.	. 59

INTRODUCTION Central Library - Ain Shams University

1- Introduction

Egypt has an agressive plan to overcome the food gap through increasing the agricultural production. There are two possibilities; intensifying farming inputs in the old lands and expanding the cultivated areas outside the Nile Delta and Valley in the desert. By year 2000, it is hoped to bring about 2.8 million feddans of desert land under cultivation and to increase the existing cropping intensity from 200% to 300%.

The main limiting factor in horizontal expansion is irrigation water. In the same time vast areas which have been put under reclamation plan in Egypt are the sandy or sandy calcareous soils. These soils are suffering from insufficient irrigation water, organic matter content as well as macro and micronutrients. Application of significant amounts of organic matter to the sandy calcareous soil has been a successful practice for improving its physical and chemical conditions as well as its productivity. Therefore, irrigation with sewage water can be used for this purpose. Sewage water usually has high content of organic matter and several heavy metals. soils can receive and decompose large amounts of organic material and the released nutrients could be utilized by the crops and where applications are used year after year, this will lead to accumulation of some heavy metals in the upper layer of the soil.

Since a long time, the city of Cairo drains and applies liquid sewage sludge to the loamy sand soils of El-Gabal El-Asfar area, 30 Km north east of Cairo. This study is aimed to investigate the prolonged application of sewage water for irrigation as a reclamation process for sandy calcareous soil and the heavy metal accumulation in soil layers as well as in the different parts of citrus trees grown in the studied areas. Heavy metals accumulation is considered one of the main limiting factors for using sewage water to irrigate edible crops wheather These heavy metals are considered also as for man or animal. soil pollutants and should be carefully undertaken through reclamation processes when using sewage water. Therefore this study was conducted in the soils of El-Gabal El-Asfar Farm. farm is of sandy soil and irrigated with sewage effluent of Cairo for more than 70 years. Most of El-Gabal El-Asfar area is under citrus trees. In this work selected soils of these fields were studied for heavy metal accumulation. Besides Orange, Mandarin and Lemon trees were also studied for heavy metals accumulation in the leaves, fruit juice and peel. Time of applying sewage water for irrigation was also considered through selecting farms with different ages.

REVIEW OF LITERATURE