Chemical Modification OF Cellulose Via Reaction With Polyfunctional Compounds

Thesis

Submitted TO Ain Shams University

By
Wafaa Anwar El Sayed
Bsc. M.sc.

FOR

The Degree Of Doctor Of Philosophy

(Ph. D.)

University College For Girls
Chemistry Department

Chemic 1 Modification of Dellulose Via Resotion with Taly unctional Compounds.

The second of th

Thesis ivisors

Approved

embl. J. Mist. J. J. H.

mof. L.Mebrien

o shibbo bato and Cho-ceid

.

war ramant.

المارية المار

(ex) a -

THE STATES

ACHNONLEDGEMENT

The author wishes to express her gratitude to Prof. Dr. S. Abd El-Nahab, Dean of the university College for Girls, Ain-Shams University, for her sincere help, encouragement and facilities provided during carrying out this work.

The author is greatly indebted to Dr. N. Y. Abou-Zeid, Assistant Professor of applied chemistry, National Research Centre, Textile Research Dyision, Dokki, Cairo, Egypt, and Frof. Dr. A. Hebeish, Professor of applied Chemistry, National Research Dentre, Textile Research Division, Dokki, Cairo, Egypt, For suggesting the present line of Nork as well as for their guidance, helpful discussions and objective criticism, which brought this investigation to a successful completion.

The author is also extremely grateful to the authorities of National Measurem Jentre (Textile Research Division), the Nutrition and Chemistry-Department, University College for Girls, Ann-Shams University for the facilities provided.

Finally, the loving encouragement of my husband, my purents and my sister, and due to their invaluable help, adivce and blessing, I could complete my endeavour successfully.

CONTENTS

	Page
Summary	vi
GENERAL FART	
I Chemistry of Hexahydro-1,3,5-Triacryloyl-	٠
S-friazine (H. T. T.)	1
1. Introduction	1
2. Preparation of H.T.T.	1
3. Reactions of H.T.T.	2
3.1. Addition Reactions	2
3.1.1. Addition of H_2 , Cl_2 , Br_2 , F_2 and	
Soliá Sodium	2
3.1.2. Addition of Inorganic Salts	3
3.1.3. Addition of Hydroren Sulphide and	
Ammonia	4
3.1.4. Audition of amines	4
3.1.5. Aduition of Alcohols	5
3.1.6. Addition of Pyridine Hydrochloride	6
3.1.7. Addition of LtuH	6
3.2. Reaction of H.T.T. with H ₂ 0	6
3.2.1. Stability of the Hexahydrotriazine	
king in Adueous Acidic Medium	6
3.2.2. Stability of the Hexahydrotriazine	
Ring in Aqueous Alkaline Medium	7

	Pa	.g€
3.3. Polymerisation Reactions	•••	8
II Chemistry of Acrylamide and its Derivatives	1	0
1. Introduction	1	0
2. Methods of Preparaction	1	0
2.1. Preparation of Acrylamide	••• 10	0
2.1.1. From Acrylonitrile	10	0
2.1.2. Miscellaneous Methods	1	3
2.2. Preparation of N-Hydroxymethylacrylam	ide 1	4
3. Chemical Properties	15	5
3.1. Reactions of Acrylamide	15	5
3.1.1. Reactions of the activated Double		
3on.d	16	5
3.1.1.1. Reaction with Halogens	16	5
2.1.1.2. Reaction with Hydroxy Compounds.	16	5
3.1.1.3. Reaction with Ammonia	16	5
3.1.1.4. neaction with Amino Compounds	17	7
1.1.1.5. Reaction with Sodium Bisulphite.	18	Š
3.1.1.0. Reaction with Hydrogen Sulphide		
uma wadium wulphide	18	ŀ
3.1.1.7. Reaction with Mercaptans	19	}
3.1.1.0. Reaction with Dithiocarbamates	19	ì
3.1.1.9. Reaction with Retones	20)
3.1.1.10. Reaction with Phosphrus	••	
Commounds	20	ì
5.1.1.11 Royota's with Iti-man I am		

	Page
3.1.1.12. Reaction with phenylbuta-	
dienes	21
3.1.1.13. Reaction with Cyclopentadiene	21
3.1.2. Reactions of the Amide Group	22
3.1.2.1. Hydrolysis	22
3.1.2.2. Salt Formation	22
3.1.2.3. Dehydration	23
3.1.2.4. Formation of Esters	23
3.1.2.5. Reaction with sodium Hypochlorite	23
3.1.2.6. Reaction with Aldehydes	24
3.1.2.7. Reaction with Chloral-Hydrate	25
3.1.3. Polymerization Reactions	25
3.1.3.1 Condensation Type Polymers	25
3.1.3.2. Vinyl Type Polymers	26
3.2. Reactions od N-Hydroxymethylacrylamide.	28
3.2.1. Reactions of the activated Double	
Bond &	28
3.2.1.1. Reaction with Halogens	28
3.2.1.2. Reaction with Hydrogen Sulphide	28
3.2.1.3. Reaction with Amines	28 .
3.2.1.4. Reaction with Dithiocarbamates	29
3.2.2. Reactions of the Methylol Group	29
3.2.2.1. Reaction with Sulphonamide	
Derivatives	ာ မ

· ·	
	Page
3.2.2.2. Anylation	30
3.2.2.1. reaction with Benzyl Ohloride	30
3.2.2.4. Formation of N.N-Methylene-bis-	
Aerplanide	30
3.2.2.5. Reaction with Alphols	31
3.4.3. Folymerization heactions	31
3-2-3-1. Vintl Tyre Tolymers	31
3.2.3.2. Jondensation Title Followers	32
III Relations of Jellulose with Acrylamide and	
acrilamide Darivatives	33
1. Introduction	3 3
2. herst mot se grone with war lamide	35
3. Weight on the Delic Tosk with Welliandwye	
actaja na praduka	3 7
4. The state of selections and H.T.T.	43
1. <u>Fin all Miller Jacobs</u> mental medita dellulose	45
V Die min in die den den judifier with H	
and Acr Parker and relation Compound	5 8
Vi iresem Conservation	71
Greciel Part	
I Chemi II would! title of outton through Reaction	
with almost added to a constante and Hexanidro-	
1,3,5-fri or . i-a-ora discol. Jorganeous	
nećiom	6 20

SU.MARY

PART I

Mechanism Of Reaction of Alkoxy Adducts Of Acrylamide and Hexahydro-1,3,5-Triacryloyl-S-Triazine With Cotton Cellulose In Non-aqueous Medium.

Reaction of alcohols with acrylamide:

The addition of methyl alcohol on the double bond : of acrylamide requires a very strong base as a catalyst. Sodium methoxide proved its efficiency in catalyzing this addition reaction in comparison to sodium hydroxide, triethylamine and triethanolamine. It was shown that the degree of conversion of acrylamide increases Significantly by increasing sodium methoxide concentration up to 0.05%. A further increase in sodium methoxide concentration causes a decrease in the degree of conversion, reflecting the reversibility of the reaction. At higher sodium methoxide concentration, splitting of the ether adduct takes place via E₂ 6-elemination meen. is me

$$CH_3OH + CH_2 = CH-CO-NH_2 = \frac{NaOCH_3}{\overline{O}CH_3}$$
 $CH_3-O-CH_2-CH_2-CO-NH_2$

It can be shown that the dgree of conversion of acrylamide to β -methoxypropionamide increases rapidly by (a) raising the reaction temperature from -3°C to +40°C, (b) by prolonging the duration of the reaction time to 180 minutes and (c) by increasing the concentration of acrylamide (ca 20%).

Replacement of methyl alconol with ethyl alcohol in the nonaqueous preparation of the acrylamide adduct yields **p**-ethoxyproionamide. On the other hand, replacement of methyl alcohol with isopropyl alcohol in the nonaqueous preparation of acrylamide adducts failed to produce **p**-(dimethyl)-methoxy propionamide.

Reaction of B-methoxypropionamide with cotton cellulose

Nitrogen inalysis showed that the reaction between . cotton cellulose and p-methoxypropionamide is dependent upon the type of catalyst and also upon the applied reaction conditions. Significant enhancement in the extent of reaction could be achieved when free acids namely hydrochloric and phosphoric acids were independently used as catalysts. The extent of reaction observed with phosphoric acid is higher than that of the hydrochloric acid particularly when the pad-dry-baking technique was used. When the latter technique was applied, the extent of the reaction obtained was greater in comparison with the pad-oatch technique. In addition, the time of baking has a noticeable influence on the extent of the reaction. When sodium hydroxide was used

as a catalyst instead of the acidic catalysts, no reaction occurred between p-methoxypropionamide and cotton cellulose.

Acid catalyzed reaction of \$\beta\text{-methoxypropionamide with} cotton cellulose in nonaqueous medium seems to proceed via substitution reaction to yield carbamoylethylated cellulose. The reaction may be represented as follows:

In support of this reaction are the following:

- a) Alkaline catalyst failed to expedite the reaction between p-methoxypropionamide and cotton cellulose.
- b) Alkaline hydrolysis of the modified cotton showed substantial amount of carboxyl groups, indicating hydrolysis of the carbamoylethyl groups to carboxyethyl groups.

Reaction of methyl alcohol with Hexahydro-1,3,5-triacryloyl-s-triazine (I):

The reaction of methyl alcohol with I in presence of sodium methoxide (0.05%) at 40°C for varying lengths of time (5-180 minutes) yields a number of reaction products as shown by thin-layer chromatography. This could be associated with hygroscopic character of methyl alcohol, since presence of water causes decomposition of sodium methoxide to yield sodium hydroxyde and the latter splitts the ring of I into simpler compounds. Also, it is likely that the methoxy-prognonyl adduct of I (if it is present in

this mixture) decomposes under the influence of the methoxide anion to give rise to I and methyl alcohol. In order to avoid these effects, the reaction between I and methyl alcohol was catalyzed by triethanolamine and was carried out in chloroform as solvent. Under these conditions only one acryloyl group of I could be saturated with methyl alcohol.

Reaction of the Hexahydro-1,3,5-mono (B-alkoxypropionyl)-diacryloyl-s-triazine with cotton cellulose:

Reaction of the adduct of I and methyl alcohol with cotton cellulose may occur via a substitution reaction or an addition reaction or both under certain conditions.

According to detailed investigation concerning factors affecting this reaction, it is probably correct to say that reaction of hexahydro-1,3,5-mono(p-methoxypropionyl) diacry-loyl-s-triazine (mono adduct of I) with cotton cellulose in nonaqueous medium proceeds escentially via a substitution reaction with elimination of methyl alcohol as shown by the mechanism successed of the following equation.

Cell-OH +
$$CH_3$$
-O-H₂C-H₂C-CO-N N-CQ-CH = CH_2

$$0 = C-CH = CH_2$$

$$M-CO-CH = CH_2$$

$$+ CH_3OH$$

$$0 = C - CH = JH_2$$

Involvement of the double bonds in addition or poly-, merization reaction or both occurs if the reaction (shown in the above equation) is performed at higher temperature, i.e. above 130°C, or for longer duration, i.e. more than 10 minutes at 150°C, or using higher concentration of the mono-adduct (above 8%) at 150°C for 10 minutes.

PART II

Grafting Of Acrylonitrile and
Methylmethacrylate Onto Methylolated Carbamoylethylated Cellulose Using Ceric Ammonium
Sulphate As Initiator.

Ceric initiated graft copohymerization of acrylonitride and methylmethacrylate onto methylolated carbamoylethyl
cellulose was investigated. Regardless of the grafting
conditions used this modified cotton showed lower graft yield
and higher homopolymer content as compared with the nonmodified
cotton cellulose. Furthermore ceric consumption during
grafting of methylol carbamoylethyl cellulose is higher than
during grafting of the nonmodified cotton. The opposite
holds true for 3e (IV) consumption during oxidation. It is
believed that in the acidic polymerization medium crosslinking occurred via cendensation of the methylol groups of the
modified cellulose and adjacent cellulose hydroxyls.

Formation of erouslinked cellulose seems to be responsible for lower grafting as well as for the lower succeptibility to exidation with ceric long.