STUDIES ON THE DEVELOPMENT AND ACTIVITY OF CERTAIN MICROBES IN RELATION TO SALINITY

A THESIS

Submitted for the Degree of Doctor of Philosophy in Bota (Microbiology)

7117

BY
FATMA ABDEL-WAHAB HELEMISH
M. Sc. B. Sc.

289.34

Botany Department
University College for Women
Ain Shams University

CAIRO 1975

ACCOMEDIBLE.T

his work has been suggested as a suggested by Dr.

Lin. Elwan, Professor of Bacteriology and Head of Potany
Department, Faculty of Science, Al-Azhar University (now,
Frof. of Bacteriology, Kuwait University), and by Dr.

A.A. Khodair, Assist. Professor of Microbiology, University
College for Women, Ain Shams University (now, Associate
Frof. of Microbiology, King Abdel-Azir University, Saudia
Arabia). The author offers thanks for this and for help
in presenting the thesis as well as discussion of results.

Thanks are also due to Dr. M.M. El-Hoseiny, Lecturer in
Microbiology, Faculty of Science, Al-Azhar University for
his helps and interest. Thanks are also due to Dr.

M.I. Mahmoud, Assist. Frofessor of Microbiology, University
College for Women, Ain Shams University for encouragement.

The author wishes to acknowledge the encouragement of all the members of Botany Dept., University College for Women, particularly Dr. A.A. Hamouda, Head of the Department for offering facilities.

this (I to may other inversity. In territore montioned inverter shows now far I involved myself of the work of the others.

bigued

... Helemish

18 miles

l ag	E i
FALC L	
ELEBACE	1
INTRODUCTIO:	4
MATERIALS A'D METHODS	9
FART II	
The role of sodium chloride in the process of	
nitrogen fix tion by A. chroccocum in response to	
gradient concentrations of sucrose, gibberellic acid	
(GA_3) and overocobalumin (B_{12})	3
Section 4:	
The role of salinity on the potentiality of	
nitronen fixation by A. chroococcum, grown at	
various concentrations of sucrose as a carbon	
sourc∈)
Section B:	
The role of solinity on the potentiality of	
nitrogen-fix: tion by 4. chrococcum, grown in	
presence of various concentrations of sucrose in	
response to medium supplemented with gibberellic	
acid (GA ₃)	•
Section C:	
The role of salinity on the potentiality of	
nitrogen fixation by A. chroccoccum, grown in	
presence of various concentrations of sucrose,	
in response to medium supplemented with cyanoco-	
balamin (Bra).)

	t 107€
FARM III	
The role of calinity in the process of pitrogen	
location as confested by the amount content in	
A. chrococcum culture, in presence of gradient	
concentration of sucrose, gibberellic acid (GA3)	
and cyanocobalanin (B12).	ძ9
Section A:	
Effect of salinity in presence of verious	
concentrations of sucrose on anmonia content in	
nitrosun-free liquid medium, inoculare with 4.	
chr ococcum	91
Section B:	
affect of salinity on ammonia content of \underline{A} .	
chroccoccum culture, grown in presence of various	
concentrations of sucrose and gibberellic acid	
(G4 ₃)	97
Section C:	
Effect of salinity on ammonia content of \underline{A} .	
chroococcum sulture, grown in presence of various	
concentration, of sucrose and cyanocobalamin (B12).	120
PART IV	
The role of salinity in the process of nitrogen	
fixation as manifested by the amino acids composi-	
tion of cell protein hydrolysate of A. chroccoccum,	
in response to gradient concentrations of sucrose,	
gibberellic acid (GA3) and cyanocobalamin (B12)	141
Section A:	
Conjugated amino acids of cellular protein	
hydrolysate of A. chroccoccum, in response to	
salinity at various concentrations of sucrose.	142

	1 note
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	
Bir of of malinity on configurate	
oc. 1. To sell instein of a. chrocesana, rown at	
various don subrations of sucrose and globerellic	
nci: (A _z)	. 154
Section C:	
Fried to the Malinity of conjugate Lamine	
colis of coll protein of A. chroccoccum, grown	
at various concentrations of sucrose and cyano-	
arbokerum (Py)	1:15
2	- /
FAR 2 V	
GENERAL DISCUSSION	2 17
SUMMARY	237
REFERENCES	247
ARABIC CUMMARY	

PARTI

A-GENERAL PREFACE
B-INTRODUCTION
C-MATERIALS AND METHODS

GLHERAL HIMMAC.

by human and animal represent a particular physiological condition in which the living cell would find itself either resisting stress, initiating adaptation or full filling a "requirement". Although it is generally acreed that Natis not required by most procaryotes, yet some strains of bacteria (e.g. <u>Bacillus circulans</u>) proved to "require" certain level of Nat (Elwan, Khodair and El-Roseiny, 1975) to fix atmospheric nitromen determined both by the conventional Kjoldahl and the scotylene reduction techniques. The requirement of Nat by encaryotic cells is well known and recognized.

Azotobacter cells represent a good system with particular behaviour (molecular nitrogen fixation) which would help follow the response of the living cell to Na⁺ under controlled conditions. Investigations made on the physiological response of Azotobacter cells to sodium chloride (e.g. Blinkov, 1955,1959 & 1963; Iswaran at al., 1966) have taken the ability to fix nitrogen as "criterion" for the "effect". The role of the "energy" source consumption, the growth factors, the Na⁺ uptake, the ammoniation, the growth factors are not taken in these investigations as criteria for elucidating the role of sodium

chloride in the physiology of the cline here were indications in certain experiments (alwer, unpublished) that certain concentrations of the organic matter in the rediud would nullify-in part - the harmful effect of sodium chloride in the cell. Certain organi: "functional" substances (e.g. gibberellins and water soluble vitamins) that proved to be synthesized by <u>Azotobacter</u> (e.g. Vancura, 1961; dennequin and blachere, 1 %; wasson, 1967; Elwan and al-Maggar, 1972) have exerted stimulatory effect on the process of nitrogen fixation (e.g. Okuda and Kobayashi, 1963; Elwan, Khodeir and al-Moseiny, 1971 and Elwan and El-Maggar, 1972).

Way to get precise knowledge regarding the role of a "factor" in operating a "process" by Tiving cell, the tork in this thesis has been suggested and planned to elucidate the role of NaCl in presence of gradient concentrations of sucrose, gibberellic acid and cyanocobalamin in operating the "process" of nitrogen fixation by Azotobacter chrococcum. Elucidations might be imperfect if one criterion was considered. Thus integrative determinations were taken as criteria viz total fixed nitrogen, ammonia content in culture and amino acids conjugated in synthesized cell protein.

This thesis wil: - therefore - ler, with the mile of Thil in the prices of nitragen fixation by azotobacter according to the Tolicaing sequence.

- 1. The role of sodium chloride in the process of nitrogen fixation by <u>A. chroococcum</u> as manifested by total fixed nitrogen, in response to gradient concentrations of sucrose, gibberellic acid, and agains cobalamin.
- II. The role of salimity in the process of nitrogen filation is manifested by the amagnic content in <u>A</u>. chroococcum culture, in response to gradient concentrations of sucrose, gibberellic acid and cyanocobalamin.
- III. The role of salinity in the process of nitrogen fixation as manifested by the amino acids composition of cell-protein hydrolysate of <u>A. chroccoccum</u>, in response to gradient concentrations of sucrose, gibberellic acid, and cyanocabalamin.

It will be seen that the integrative criteria and the "model systems" used proved adequate to reveal masked effects which would have both fundamental and practical importance.

INTRODUCTION

41.1800.00.00.1011

the part of this thesis was practice to elucidate the physical ion resultses of A. chrancicoun, n., to increasing concentrations of salanics is unnifested by its ability to fix molecular nitrogen in view of No. and energy supplement uptake. Indications in previous work (Elwan, appublished) gave feveur to the role of organio m tter in nullifying the deleterious effect on Azotobacter of relatively higher concentrations of sodium chloride. On the other hand, indoles withming wind acids, and gibberellic acid were found to contribute to a certain extent for the potency of 4. chrococcum to fix atmospheric nitrogen (Elwan, Khodair and El-Loseiny, 1971). It was felt what some of these additives (as functional organic substances) would nullify the harmful effect of NaCl. in this thesis, therefore, responses of a. chroococcum to salinity levels in culture in presence of a particular vitamin cyanocobalamin ($B_{\gamma 2}$) and gibberellic acid (GA_3) were investigated in an endeavour to evaluate the potential introduction of the strain investigated in certain saline soils of soil reclamation programmes.

Keeping in mind, the aim mentioned above, this introduction will deal with the following:

a) Salt tolerant nitrogen fixing micro-organisms other than Azotobacter.

- b) <u>Anotobacter</u> so a cost to reconstruction en-lixing micro-organism.
 - ch drowth factors affecting anothbacter growth.

a) <u>alt tolerant mitrogen-figing micro-ougunisms other</u> than <u>Azotobacter</u>:

Saline soils and sea-water represent the most at indent naturally occurring salty habitats. Estimations of global biological N2-Timption (Hardy, 1972) indicate that 20% of the overall fixation of 178 x 10° metric tons per year takes place in the sea. These data for the oceans were based primarily on knowledge of the activity of bluegreen algae in the marine environment (e.g. Allen, 1963; Dugdale et al., 1965; Stewart, 1965 & 1967; Punt et al., 1970; and Goering & Parker, 1972).

Stewart (1962,1965. 1964) reported on the basis of long-term growth analysis that the two blue-green algae Calothrix scopulorum and Nostoc entophytum isolated from marine environments fix atmospheric nitrogen and liberate a proportion of the nitrogen fixed into the medium. Rate of fixation was rather faster in natural sea water than in artificial sea-water free from combined nitrogen. He observed that fixation rates were not

moriedly offected by lore evariations is salinity of the medium and <u>Dalothrix</u> was more resistant; changes in salinity than was <u>Nostoc</u>

were found to tolerate high relimits levels. Allen (1956) reported that the fresh water blue-green signs anabaena chindrica, valothrix parietins and various Nostoc species fixed nitrogen at salinities approaching those of natural sea-water. Pay and logg (1962) reported similar results for Cloroglaca fritschii.

Relatively, little late are available on the magnitude of bacterial N2-fixation in the sea (Brown et al., 1972). The first evidence of bacterial N2-fixation in the marine environment in situ was obtained by Brooks et al. (1971) and by Sugahara et al. (1971) using the acetylene-reduction test. Sister and Zobell (1951) reported N2-fixation by sulfate reducing bacteria, which are known to be widely distributed in the sea. N2-fixing clostridia were also isolated from the sea (e.g. Hotchkiss, 1936; Pshenin, 1959). Werner et al. (1974) investigated the distribution of N2-fixing bacteria in marine habitat and stated that N2-fixing facultatively anaerobic bacteria may be quite common in the coastal environment. They