A THESIS

€′q · ·

STUDIES ON SOME INTROGENOUS HETEROCYCLIC FIVE AND SIX MEMBERED ONES

Presented by

NADIA GHARIB HASSAN KANDILE

(B. Sc., M. Sc.)

5 × 1. 0

For the Dogree of Ph. D.

UNIVERSITY COLLEGE

FOR WOMEN

AIN SHAMS UNIVERSITY

CHILO

1174

STUDIES ON SOME NITROGENOUS HETEROCYCLIC FIVE AND SIX

Thosis Advisors

Professor W.I. Awad (D.Sc.)

Professor Dr. S. Abdel Wahab

Dr. M.F. Ismail

Approved

Cildelyn hal

. M. F. Jamail.

J. abdel Wahale

Prof. Dr. S. Abdel Wahab

Head of Chemistry Department

ACKNOWLEDGEMENT

The author wishes to express her appreciation to Professor Dr. S. Abdel Wahab for her kind help and the facilities at her disposal.

The author wishes also to express her thanks and deep gratitude to Professor Dr. W.I. Awad, D.Sc., professor of organic chemistry, University College for Women, and Dr. M.F. Ismail, lecturer of organic chemistry, Chemistry Department, Faculty of Science, Ain Shams University, not only for suggesting the subjects investigated but also for their continuous advice and walamble criticism.

CONTENTS

		Page			
I-	SUMMARY	1			
II-	LIST OF NEW COMPOUNDS	vi			
III-	LIST OF KNOWN COMPOUNDS PREPARED BY OTHER METHODS	viii			
IV-	INTRODUCTION				
	Composition of Grignard reagent	1			
	derivatives	8			
	alkylated saccharines	23			
	ing the group -N=C	25 25 28			
	a) Reaction with aldimines	25			
	b) Reaction with ketimines	28			
	c) Reaction with aldazines	35 38			
	d) Reaction with carbodimides	28			
	e) Reaction with phenylhydrasones f) Reaction with osazones	38			
		47			
	g) Reaction with semicarbazones	49			
V -	DISCUSSION	53			
VI-	EXPERIMENTAL	93			
AII-	REFERENCES	156			
ARABIC SUMMARY					

-000-

p-Tolyhagnesium bromide on the other hand did not react with N,N°-bisuccinimide (1 mole) at room temperature. However, when the reaction was carried out under reflux, it yielded bist(\$-p-tolucylpropiony.)hydresine (CIV).

Bonsylmagnesium chloride (4 moles) reacts with N,N'-bisuccinimide (1 mole) et room temperature to give bis-(3,3-dibensyl-3-hydroxypropionyl)hydrasine (CIII).

c) Action of aryl- or alkylmagnesium balides on H.H'biphthaliside (GY).

The reaction of N,N'-biphthalimide (CV) with phecyl-, p-tolyl-, and bensylmagnesium halides at room temperature proceeded in most cases through the ring clasvage on the biimide ring to form 3,3-disubstituted phthalides (CVIIa-d). In these cases it was possible to identify hydrazine in the reaction mixture. However, in the case of ethyl-magnesium iedide it was possible to isolate in addition to the 3,3-diethylphthalide (CVIId), 1-ethylphthalas-4-one (CVIIIe).

d) Action of arrheatnesium balides on esymmetric bimides (CIX) and (CIX).

N-Phthalimidemaleimide (CIX) and N-phthalimidesuccinimide (CX) are prepared by the direct interaction between N-aminophthalimide and maleic or succinic anhydrides, respectively.

Part III

1.3-Dipolar Addition to N.N'-Bimaleimide and N-Phthalimide-maleimide.

Hydrasoic acid reacts with N,N'-bimal@imide (XCIV) or biiscasleimide (XCVI) to give N,N'-bi-a -azidosuccinimide (CXVI). N-phthalimidomaleimide (CIX) undergoes similar reaction with hydrazoic acid to give (CXVII). The reaction involved the addition of the hydrasoic acid to the activated double bond in each case.

Discomethane reacts with N,N'-bimaleimide or biisomaleimide to give the Δ^1 -pyrazoline derivative (CXVIII). Diphenyldiasomethane, on the other hand reacts with the same biimides to give a compound which loses nitrogen spontanesouly giving the corresponding cyclopropane derivative (CXIX).

N-Phthalimidomaleimide (CIX) reacts with diazoethane to give Δ^2 -pyrazoline derivatives (CXX).

Diphenyldiazomethane or diazofluorene reacts with the above biimide (CIX) to give the cyclopropane derivatives (CIXI) and (CIXII). respectively.

The structures of the above compounds are inferred from analytical data and a study of their infrared, and electronic spectra.

LIST OF NEW COMPOUNDS

- 1) Bis-(p-benzoyl-a-phonylpropionyl) bydrasine (ECVa).
- 2) Bis-(\$-p-toluoy1-a-toly1propiony1) hydrszine (XCVb).
- 5) Bis-(A-p-methoxybensoyl-a-methoxyphenylpropionyl) hydrasine (XCVo).
- 4) Bis-(3-benzoyl-1-hydroxy-1-phenylpropionyl) hydrazine (CI).
- 5) Bis-(β-p-toluoylpropionyl)hydrazine (CIV).
- 6) Bis-(3,3-dibensyl-3-hydroxypropionyl) bydrazine (CIII).
- 7) N-Phthalimidomaleimide (CIX).
- 8) N-Phthalimidosuccinimide (CX).
- 9) N-Cyclohexylidene aminophthalimide (CXIe).
- 10) N-Diphenylmethylamino-(3-hydroxy-3-phenyl)phthalimidine (CXIIa)
- 11) N-(1-p-Methoxyphenyl-1-phenyl)-amino-(3-hydroxy-3-phenyl)phthalimidine (CXIIb).
- 12) Describenzoin-q-carboxylic-1,2-diphenyl-1-ethyl hydrazide (CXIIIc).
- 13) Describensoin-g-carboxylic-l-p-methoxyphenyl-2-phenyl-Y-ethylhydrazide (CXIIId).

- 14) Desoxybenzoin-Q-cerboxylic-l-cinnsmyl-2-phenyl-ethyl hydrazide (CXIIIe).
- 15) N-(acatyl)-1,2-diphenylethylamino-3-bensalphthalimide (CXIV).
- 16) N.N'-Bi-a -azidosucciaimide (CXVI).
- 17) N-Phthalimido- a -azidosuccinimide (CXVII).
- 18) N.N'-Bi- Δ1-pyrezoline-4,5-dicarboximide (CXVIII).
- 19) N-Phthelimido- Δ^2 -pyrasoline-4,5-dicarboximide (CXX).
- 20) N,N'-Bi-1,1-diphenylcyclopropane-2,3-dicarboximide (CXIX).
- 21) N-Phthalimido-1,1-diphenylcyclopropane-2,3-dicarboximide (CXXI).
- 22) N-Phthalimido-l-fluorenylcyclopropane-2,3-di-carboximide (CXXII).

COMPOSITION OF GRIGNARD REAGENT

Los!

rea

six.

COM

alk

tha

the

to

Sch

Wi

COL

CO

sp

th

tH

đã

80

as

př

SĮ

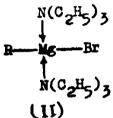
The composition of Grignard compounds has been the subject of much study and controversy1,2. Although many suggestions have been made concerning the composition of Grignard compounds, only two of these received much The first suggestion made by Grignard 34 and later supported by Meisenheimer 5, was that the Grignard compounds are best represented by the formula RMgX. second suggestion was made by Jolibois and involved the representation of Grignard compounds by the formula R2Mg. WgY2. The first convincing evidence permitting a clear-cut choice between these formulations was presented in 1957 by Dessy and co-workers?. They found no exchange between 28 LgBr 2 and (C2H5) 2 Mg and prosented ovidence that an equimolecular mixture of MgBr2 and (02H5)2Mg has the same characteristics as the Grignard reagent prepared from C2H5Br and Mg. Thus, it was concluded that alkyl exchange does not take place in diethyl ether and that the RMgX species does not exist in solution and therefore Grignard compounds are best represented by the structure first suggested by Jolibois, namely, R2Mg.MgX2.

Since the work of Dessy, the representation R2Mg.MgX2 for Grignard compounds has been widely accepted. Thus,

in tetrahydrofuran and that the composition of Grignard compounds in diethyl ether is best described by the equilibries-

with the position of equilibria being a function of the nature of R group, the halogen as well as the concentration. Their conclusions were based on molecular association data and reinterpretation of existing data in the literature reported by other authors.

to eliminating the confusion in this area. First, Dessy and his co-workers 13 have reported the exchange experiments they initially reported in 1957. In their most recent publication they found exchange with certain, but not all, grades of magnesium. Soon thereafter, Cowan, Hsu and Reborts 14 reported similar results using 25 magnesium. Moreover, Rundle and his co-workers reported the structure (I) for phenyl and ethylmagnesium bromides in the solid state based on X-ray studies.


_ 4 -

Although whether a single solid state structure can be equated for a species in a lution is questionable, this work did add to the evidence supporting the existence of RMgX species in diethyl other in Grignard compounds.

diethyl ether other than as an intermediate was provided recently 18. The same report also claimed that RMgX is the initial species formed when an alkyl halide and magnesium react. It was argued that the difference between the composition of Grignard compounds in tetrahydrofuran and diethyl ether is explained by the difference in basicity of the two solvents. Ebullioscopic measurements show a monomer-dimer equilibrium in diethyl ether, but only monomer, present in tetrahydrofuran. Thus, tetrahydrofuran co-ordinates with magnesium more strongly than diethyl ether, and a stable halogenbridge compound is not formed. The exchange of alkyl groups in either tetrahydrofuran or diethyl ether can be explained by an intermediate mixed alkyl-balogen bridge structure of the type suggested earlier 12.

Grignard compounds co-ordinated to a more basic solvent than diethyl ether or tetrahydrofuren might not form such intermediates if the magnesium orbitals were

might be prevented and the initial species formed by the reaction of HX and Mg could be isolated. In order to test this hypothesis, the above author 17 prepared ethylmsgnesium browide from ethyl browide and magnesium in triethylsmine. The reaction product (II) was fractionally crystallised into seven fractions. Each fraction had a Mg:Br:N ratio of

1.0:1.0:1.0 within experimental error. (Although C₂H₅MgBr crystallises from triethylamine as the bisolvent, the monosolvate was isolated on drying under high vacuum).

Molecular association measurements of the crystallised fractions in triethylamine at 35° showed the presence of monomeric species over a wide concentration range. Because of the highly insoluble nature of MgBr₂ in triethylamine and the soluble nature of (C₂H₅)₂Mg, precipitation of MgBr₂ from solution would have occurred if an unassociated mixture of these products was present. These data proved to him that the reaction product is a single species and not a mixture. He also found that the product C₂H₅MgBrM(C₂H₅)₃

did not disproportionate in boiling triethylamine during 24 hours, nor was it formed by redistribution of $(C_2H_5)_2MS$ and $MgBr_2$ in triethylamine. Thus, it was concluded that C_2H_5MgBr is the initial product formed by the reaction of C_2H_5Rr and magnesium, and in triethylamine solution the composition can be represented by this single structure.

In a similar way, the existence of RMgX in diethyl ether was established. When a diethyl ether solution of ethylmagnesium bromide, prepared from C2H5Br and Mg in diethyl other, was added slowly to a large, rapidly stirred volume or triethylamine, C2H5MgBr.N(C2H5)3 was isolated in over 90% yield by fractional crystallisation. The fact that no MgBr2·N(C2H5)3 was isolated although it is the most insoluble of the possible products, led to the conclusion that the rate of the solvation is greater than the rate of equilibration and therefore in diethyl ether solution ethylmagnesium bromide consists mainly, if not entirely, or RMgX species (as a monomer or dimer).

Moreover, Swith and Becker 18 from thermochemical studies indicated that in diethyl ether solution the equilibrium lies predominantly to the right.

$$R_2Mg + MgX_2 \longrightarrow 2 RMgX$$
.

_ _ ___

Similar thermochemical experiments were conducted by Smith and Becker 19,20 in tetrahydrofuran. They found that the above equilibrium is not nearly as far to the right as in diethyl ether. The results are in agreement with earlier work carried out by Salinger and Mosher 21.

Kharasch²² summarised the determinations made by some authors to the percent ges of RMgX, R₂Mg and MgX₂ for some Grignard respents in the following table.

RX	RMgX %	R ₂ Mg %	Max ⁵ %
CH3I	87.0	6 .5	6.5
C ₂ H ₅ I	43.0	28.5	28.5
C ₂ H ₅ Br	41.0	29.5	29.5
С ₂ H ₅ C1	15.0	42.5	42.5
n-C ₃ H ₇ I	24.0	38.0	38.0
n-C ₃ H ₇ Rr	24.0	38.0	38.0
n-C ₃ H ₇ Cl	17.0	41.5	41.5
C ₆ H ₅ I	3 8 . 0	31.0	31.0
C ₆ H ₅ Br	30.0	35.0	3 5.0
2,4-(CH ₃) ₂ -C ₆ H ₃ Br	44.0	28.0	28.0
2,4-(CH ₃) ₂ C ₆ H ₃ I	55.0	22.5	22.5
2,4,6-(CH ₃) ₃ -C ₆ H ₂ Br	64.0	18.0	18.0