STUDY OF THE NUCLEAR STRUCTURE OF RADIOACTIVE ISOTOPES

THESIS

Submitted in Partial Fulfilment of the Requirement

The Degree of MASTER OF SCIENCE

in PHYSICS

By ZEINAB YOUSEF MORESY

 $I_{\rm d}^{A}$

2 mach

Ain Shams University
College for Women
Physics Department

1989

المنافع المنا

سورة البقرة والآبة ٢٢٠)

STUDY OF THE NUCLEAR STRUCTURE OF RADIOACTIVE ISOTOPES

Thesis Advisors

Signature

1- Dr. Samia Abdel Malak Assistant Professor of Physics University College for Women, Ain Shams University. Sauce Ahiel Maldr

- 2- Dr. Amany. Taha Sroor
 Teacher of Physics
 University college for Women
 Ain Shams University.
- 3- Dr. Amal El Shershapy
 Teacher of Physics
 University College for Women
 Aln Shams University

Approved

Head of Physics Department

ACKNOWLEDGMENT

The auther wishes to express her deep thanks to Prof. Dr. M.A. Kenawy Head of the Physics Department for his encouragement and for providing the facilities during this work.

The author would like to express neep thanks and gratitude to Dr. S. Abdel Malak, Dr. S. Sadek, Dr. A. Sroor and Dr. A. El Shershapy for suggesting the problem, kind guidance, continuous help and fruitful discussions during the whole period of the present work.

I feel greatly indebted to Dr. M. Mohsen, Faculty of Science, Dr. S. El Bahi, Dr. N. Abdel Basset, Dr. M. Abdel Wahab, and all the members of the Nuclear Physics laboratory.

CONTENTS

•	Page
ACKNOWLEDGMENTS	
ABSTRACT	
SUMMARY	i
LIST OF FIGURES	· ii
LIST OF TABLES	5
	. 9
CHAPTER I: THEORETICAL BASIS	
I- 1- Introduction	10
I- 2- Interaction of gamma-rays with matter	11
-a Photo electric effect	14
-b Compton scattering	16
-c Pair production	20
1-3- Internal conversion	24
I-4- Zero Zero transitions	29
I-5- Internal pair creation	30
I-6- Nuclear Isomerism	31
I-7- Beta decay	34
I-8- Electron capture	
I-9- Selection rules of Gamma-rays	38
I-10- Gamma-ray transition propabilities	41
1-11- Lifetime management	43
	45
CHAPTER II EXPERIMENTAL TECHNIQUE, ARRANGEMENTS AND	
CALIBRATION OF THE SPECTROUETERS	
II-1- Introduction	 EE
	. 1:1

		Page
I I -1 -a	Semi-conductor detector	56
-b	Scintillation detector	58
II-2	Gamma-ray singles spectromders	59
-a	Detectors	60
- b	The pre Amplifier	63
-с	The spectroscopy Amplifier	63
−d	The Multi-channel pulse height analyzer(McA)	64
11-3	Calibration of the gamma-ray singles	
	spectrometer	65
-a	Energy Resolution	65
- b	Accuracy of energy determination	69
-c	Efficiency curve for HPGe detectors	70
I I - 4	The gamma-gamma coincidence studies	74
-a	Timing Filter Amplifier (T.F.A)	79
-b	Constant fraction Discriminator (C.F.D)	80
-c	Time to Amplitude converter (T.A.C)	81
-d	The coincidence Unit (C)	82
~e	The gate and delay generator (C&D)	82
I -5	Life time measurements using delayed coinci-	
	dence	84
	Life time spectrometer	8.1

		Page
CHAPTER	III: INTENSITY, COINCIDENCE AND LIFE TIME MEASUREMENTS IN 129 I FOLLOWING B DECAY OF 129 Te	
III-1	Introduction	88
111-2	Source preparation and experimental	
	procedure	90
111-3	Experimental results and analysis	95
111-4	Levels discussion	12 3
111-5	Theoretical investigation of energy	
	states of $\begin{array}{c} 129 \\ 53 \end{array}$	128
	nces	1 32
Arabic	Summary	

ABSTRACT

ABSTRACT

The decay of ^{129m}Te and ^{129g}Te to levels in ¹²⁹I has been studied using a planer hyper pure Ge detector for E 40 Kev and a coaxial hyper pure Ge detector for E 40 Kev. A NaI (T) - HPGe) fast - slow coincidence spectrometer was used to test and confirm the different cascades and a delayed coincidence spectrometer to measure the half life of the 27.55 Kev level.

Gamma-ray energies and intensities were extracted, from the singles gamma-ray spectra and the gamma-gamma coincidence spectra, and were fitted in a proposed decay scheme.

A total of sixty five gamma-rays are accounted for by nineteen excited states, eight gamma-ray transitions are confirmed to be in more than one position in the decay scheme.

Two new gamma rays at energies 474.29 Kev and 632.52 Kev have been observed and confirmed for the first time in the present singles and/or gamma-gamma coincidence measurements. These new transitions could be fitted into the proposed level scheme also a couple of the previously observed gamma trainsitions were fitted in the decay scheme for the first time.

1.

The half life of the 27.55 Kev level was determined by the delayed coincidence method to be 15.3846 ± 0.0549 n.s.

The energy levels of the nucleus under investigation have been discussed and compared with previous work.

The experimental results are compared with theoretical predicted level values obtained using the weak coupling madel.

SUMMARY

SUMMARY

The study of decay schemes of radioactive nuclei provides a powerfull tool for testing the validity of nuclear models as well as for gaining knowledge about nuclear structure, and the knowledge of the liftime of a nuclear state provides the essential information to obtain transition matrix elements for comparison with theoretical nuclear models.

Various instruments are used to study gamma-ray energies and intensities; scintillation and semiconductor detectors are the most commenly used ones.

Scientillation detectors have better efficiency and timing properties; however semiconductor detectors have better energy resolution and are usually used for accurate determination of energies and intensities.

In the present investigation the gamma-ray energies and relative intensities in the decay spectrum of the 33 day $^{129\text{m}}$ Te and 70 min state of $^{129\text{g}}$ Te isotopes was accomplished using a coaxial hyper pure Go and a planer hyper pure Go in singles gamma-ray spectrometers.

The different cascade relationships were studied and confirmed through gamma-gamma coincidence experiments using

a fast-slow coincidence spectrometer in which a scintillation detector was used for gating purposes.

A delayed coincidence spectrometer was used for life time measurements. The used spectrometers were tested and calibrated before the measurements.

The Thesis Contains Three Chapters:-

- Chapter (I) contains some theoretical basis; Interaction of gamma-rays with matter, gamma selection rules and a general review on the nuclear disintegration process
- Chapter(II) contains a general descritpion of the equipments used in the gamma singles spectrometer, the gamma-gamma fast_slow coincidence spectrometer and the delayed coincidence spectrometer used for lifetime measurements. In addition the different tests and spectrometer calibrations are included.
- Chpater (III) is concerned with the present experimental results which can be summarized as follows.

Gamma-ray energies and intensities were extracted from the singles gamma-ray spectra and the gamma-gamma coincidence spectra, and were fitted in a proposed decay scheme.

A total of sixty five gamma-rays are accounted for by nineteen excited states, eight gamma-ray transitions are confirmed to be in more than one position in the decay scheme.

Two new gamma-rays at energies 474.29 Kev and 632.52 Kev have been observed and confirmed for the first time in the present singles and / or gamma-gamma coincidence measurements. These new transitions could be fitted into the proposed level scheme.

The previously observed gamma transitions at 415.58 and 918. 07 Kev were fitted in the decay scheme for the first time.

According to the present singles and / or coincidence results the levels at 343, 560, 1022, 1077, 1083, 1378 and 1427 Kev previously observed by different autions were not confirmed and therefore not included in the proposed decay scheme. Yet the levels proviously proposed at 1047.02, 1196.4, 1204.07 and 1209.51 Key were confirmed.

The half life of the 27.55 Kev level was determined by the delayed coincidence method to be 15.3846 ± 0.0549 n.s.

The energy levels of the nucleus under investigation have been analysed discussed and compared with previous work.