

SOLID STATE NUCLEAR DETECTORS AND THEIR APPLICATIONS IN ENVIRONMENTAL RADIATION MEASUREMENTS

A THESIS

Submitted in Partial Fullfillment of the Requirements for the degree of Master of Science

41183

539.2 F.P.

Presented by

FAHIMA ABDEL-KAWY MOHAMED KORAIEM Rad. Prot. Dept., (NRSC), AEA.

T0

the Physics Dept., University College for Women Ain Shams University

1991

SOLID STATE NUCLEAR DETECTORS AND THEIR APPLICATIONS IN ENVIRONMENTAL RADIATION MEASUREMENTS

Thesis advisors

Prof. Dr. Kenawy, M.,

Prof. Dr. Hassib, G.M.,

Ass. Prof. Eid, A.M.,

Approved

HA-85127

A.M. 8:

Approved

head of physics dept.,

ACKNOWLEDGMENT

The author wishes to express her gratitude to Prof. Dr. M. Kenawy, Physics Dept., University College for Girls, Ain Shams University, for his constant advice, valuable supervision and fruitful discussions.

Utmost appreciations are due to Prof. Dr. G.M. Hassib, NRSC, AEA, and Ass. Prof. Dr. A.M. Eid, NCRRT, AEA for their close supervision, continuous guidance, valuable advices and great effort to have this thesis complete.

The encouragement, the valuable suggestions and the willing assistances of Prof. Dr. F.H. Hammad, Chairman of AEA, are highly appreciated.

Sincere thanks are due to Prof. Dr. A.S. Abdel gawad, NRSC, AEA, and Prof. Dr. H. Maghrawi, NRC, AEA, for helping in the chemical preparation of the thermoluminescence materials. The calibration facilities offered by Prof. Dr. M. Al-Fiki, NIS, are highly appreciated.

Finally, the author is most obliged to her colleagues for their help throughout her studies and research.

SUMMARY Central Library - Ain Shams University

SUMMARY

Among different solid state nuclear detectors, thermoluminescence (TL) materials have the capability of storing energy when exposed to ionizing radiation. This energy can be re-emitted in the form of visible light when the materials are heated to a suitable temperature. In this work, this phenomena has been studied theoretically and experimentally to fulfill the following objectives:

- 1- To realize a good understanding of the thermoluminescence phenomenon specifically and to be familiar with the latest state of the art.
- 2- To gain some experiences in preparing a home-made CaSO₄: Dy TL material for the first time in Egypt and to study the various physical parameters which control its sensitivity and dosimetric characteristics.
- 3- To run a field application on this material as a part of a national environmental radiation monitoring program.

In this thesis, theoretical and experimental materials are given in five chapters.

Chapter one presents a general introduction about the following subjects:

- the natural and man-made sources of background radiation and their origins,

- an idea about solid state nuclear detectors in use such as scintillation detectors, semiconductor detectors, radiophotoluminescence dosimeters and thermoluminescence dosimeters.
- a discussion about the luminescence phenomena,
- a review about the commonly used thermoluminescence phosphors in environmental measurements with special emphasis on CaSO₄ TL material with different types of activators.
- the objective of the present work.

Chapter two discusses the physical and the theoretical consideration of thermoluminescence. In this chapter the kinetic model which studies the defect properties as a tool for determining trapping parameter such as activation energy and frequency factors are reviewed.

Chapter three presents a detailed description of the preparation procedure of the home-made CaSO₄:Dy Th material. The instruments used in this study such as, the Th read-out system, the irradiation facilities, the dose rate meter and the annealing furnace are depicted. The measuring techniques, the measuring accuracy and the lower detection limit are also presented.

Chapter four includes the experimental results and discussions which can be summarized as follows:

- During sample preparation of CaSO₄:Dy TL material,

- the continuous evaporation method produces a more senstivite phosphor than that in case of the interrupted evaporation method.
- The optimum concentration of Dy in $CaSO_4$ was found to be $\emptyset.19$ mol %.
- A pre-irradiation heat treatment at 700°C for a period of 2 hours followed by cooling in air was considered as the optimum condition.
- The glow curve structures of the home-made CaSO₄:Dy TL phosphor include two main glow peaks at 110°C and 190°C and the dominant dosimetric stable peak is considered at 190°C.
- The response to gamma-rays was found to be linear over the range from 0.1 mGy up to 30 Gy followed by a saturation region. No supralinearity was observed.
- The natural fading was found to be 11% during the first 50 days.
- The over response at low photon energies was calculated and compensated by using a 0.3 mm lead shield.
- The TL signal of irradiated material was found to be reliable for gamma-ray dose estimation over the range from 0.1 mGy up to 30 Gy.
- For application in environmental radiation monitoring, the response below 0.1 mGy was checked and the results indicated that the response is linear in the dose range from 0.01 mGy up to 0.6 mGy.

- The results of a field application is about 42 locations in Cairo province indicate an average annual background dose of 699 \pm 8.7 % μGy .

Chapter five presents the main conclusion drawn from the theoretical and experimental studies given in this work along with some recommended applications.

Finally, the main outcome of this work is the preparation of a home-made CaSO₄:Dy TL material for the first time in Egypt with suitable characteristics which make its application in personnel dosimetry, accidental dosimetry as well as environmental dosimetry quite reasonable.

TABLE OF CONTENTS

	Page	
Acknowledgments		
Summary		
Table of contents		
CHAPTER I		
INTRODUCTION		
1.1 General	1	
1.2 Environmental Radiation Background	2	
1.3 Solid State Nuclear Detectors	4	
1.3.1 Scintillation detectors	4	
1.3.2 Semiconductor detectors	6	
1.3.3 Radiophotoluminescence (RPL) dosimete	rs 8	
1.3.4 Thermoluminescence (TL) dosimeters	10	
1.4 The Luminescence Phenomenon	11	
1.5 Thermoluminescence Materials	15	
1.5.1 Commonly used TL phosphor	15	
1.5.2 Calcium sulphate TL phosphor	16	
1.5.2.1 CaSO ₄ :Mn	16	
1.5.2.2 CaSO ₄ :Sm	17	
1.5.2.3 CaSO ₄ :Mn,Pb	18	
1.5.2.4 CaSO ₄ : Dy	18	
1.6 The Main Objectives of this Work	2Ø	

CHAPTER II PHYSICAL AND THEORETICAL CONSIDERATIONS

4.1	Excitation by Madiation	61	
2.2	Lattic Defects	23	
2.3	Thermal Excitation and Recombination	24	
2.4	Analysis of the Thermally Stimulated Process	26	
2.5	Kinetic Models		
	2.5.1 Two peaks model	34	
2.6	Determination of Trap Parameters	36	
	CHAPTER III EXPERIMENTAL TECHNIQUES AND INSTRUMENTATION		
3.1	Preparation of A Home-Made CaSO4:dy TL Phosphor	39	
3.2	Instrumentations	41	
	3.2.1 Irradiation facilities	41	
	3.2.1.1 Cesium-137 gamma-rays unit	41	
	3.2.1.2 Cobalt-60 gamma-rays unit	42	
	3.2.2 Dose rate measurement	44	
	3.2.3 Annealing furnace -	4.4	
	3.2.4 Thermoluminescence read-out system	4.4	
	3.2.5 Sample handling and measuring technique	48	
3 5	Ryperimental Errors and Lower Detection Limit	AC	

CHAPTER IV

RESULTS AND DISCUSSIONS

4.1	Optimi:	zation of Preparation and Heat Techniques	52
	4.1.1	The method of evaporation during preparation	52
	4.1.2	Dysprosium concentration	53
	4.1.3	Grain size effect	54
	4.1.4	Pre-irradiation heating	57
		4.1.4.1 Heating temperature	57
		4.1.4.2 Heating period	59
		4.1.4.3 Cooling method	6Ø
4.2	Thermo	luminescence Dosimetric Characteristics	61
	4.2.1	Glow curve structure	61
	4.2.2	Linearity	63
	4.2.3	Fading	65
	4.2.4	Energy response	67
4.3	Field	Application	70
	4.3.1	Energy compensation	70
	4.3.2	Correction against fading	71
	4.3.3	Low exposure dose control	75
	4.3.4	Dosimeter distribution	77
	4.3.5	Analysis of environmental measurements	79
	CHAPTI	CR V	
	CONCL	USIONS	84
	Public	cations Based on the Present Thesis	88
	REFER	RNCES	88

CHAPTER I INTRODUCTION

CHAPTER I

INTRODUCTION

1.1 GENERAL

Throughout history man has lived with ionizing radiation from natural sources and recently from manmade sources. By time, the second part has been integrated in the steady radiation environment. It is impossible for people to avoid exposures to radiation within their living environment which depends mainly on the type of dwelling they are living, their life style and the level of medical care they receive.

The average annual dose from natural source was found to be about 2.4 millisievert with individual doses ranging from 1 to 5 mSv per year and one Sv in some extreme cases [1]. Even so, there are well documented areas where people are exposed to exceptionally high levels of terrestrial radiation. In the coastal areas of Kerala and Tamil Nadu in India. Thorium rich Monazite sands result in dose rates that can be up to 1000 times higher than the normal radiation background. Also, in the Barzilian areas of Guarapari, Meaipe and Pocos de Caldas, dose rates can as much as 100 times the normal level [1]. Therefore, detailed studies of natural radiation and its local and temporal variation are highly needed because of the possible biological hazard of such