Role of Gamma Knife radiosurgery in management of residual pituitary adenomas after surgery

Thesis

Submitted for partial fulfillment of M.D. degree in neurosurgery

By
Sameh Roshdy Iskandar Tawadros
M.B.B.Ch, M.Sc.

Under supervision of

Prof. Dr. Emad Mohamad Ghanem

Professor of neurosurgery
Ain Shams University

Prof. Dr. Tarek Lotfy Salem

Professor of neurosurgery Ain Shams University

Prof. Dr. Amr Mohamed Nageeb El-Shehaby

Assistant professor of neurosurgery
Ain Shams University

Faculty of medicine
Ain Shams University
2015

ACKNOWLEDGMENTS

First and forever, thanks to **GOD**, the most merciful who helped and guided me to complete this work.

I would like to express my deep gratitude to **Prof. Dr. Emad Mohamad Ghanem**, professor of neurosurgery, faculty of medicine, Ain Shams University, for his kindness, guidance, and continuous encouragement throughout this work.

I would like to thank **Prof. Dr. Tarek Lotfy Salem**, professor of neurosurgery, faculty of medicine, Ain Shams University, for his continuous help, and his concern will always be remembered.

I also would like to thank **Prof. Dr. Amr Mohamed Nageeb El-Shehaby**, assistant professor of neurosurgery, faculty of medicine, Ain Shams University, for his continuous time, help, and concern.

I also own a great gratitude to all the working team members at the Gamma Knife Center / Nasser Institute, for helping and guiding me to finish and finalize this work.

Last, but not least, I can not forget to thank all the members of my family for their continuous help and support.

CONTENTS

- 1. List of abbreviations
- 2. List of tables
- 3. List of figures
- 4. Review of literature
- 5. Aim of the work
- 6. Clinical materials and methods
- 7. Results
- 8. Illustrated cases
- 9. Discussion
- 10. Summary and conclusion
- 11. References
- 12. Arabic summary

LIST OF ABBREVIATIONS

ACTH: adrenocorticotropic

hormone

ADH: antidiuretic hormone

APS: automated positioning

system

BIPSS: Bilateral inferior

petrosal sinus sampling **CD:** Cushing's disease

CRH: corticotrophin-releasing

hormone

CS: Cushing's syndrome

CSF: cerebrospinal fluid

CT: Computed tomography

dDAVP: 1-deamino-8-D-

arginine vasopressin **DI:** diabetes insipidus

FOV: field of view

FSH: follicle-stimulating

hormone

GH: growth hormone **GK:** Gamma Knife

GRH: growth hormone

releasing hormone

Gy: gray

HP: Hewlett Packard

IGF-I: insulin-like growth

factor I

IMRT: intensity modulated

radiotherapy

LH: luteinizing hormone

LHRH: luteinizing hormone-

releasing hormone

LINAC: Linear accelerator

MEN: multiple endocrine

neoplasia

Mm: millimeter

MRI: magnetic resonance

imaging

OGTT: oral glucose tolerance

test

PD: prescription dose

PFX: perfexion

PRH: prolactin-releasing

hormone

PRL: prolactin

RGS: Rotating Gamma

System

RTV: residual tumor volume

SD: standard deviation

SRS: stereotactic radiosurgery SSTR: somatostatin receptors

TRH: thyroid-releasing

hormone

TSH: thyroid-stimulating

hormone

UFC: urine free cortisol

VF: visual field

LIST OF TABLES

- Table (1): Key aspects of hypophysiotrophic hormones. (Molina and Ashman, 2010).
- **Table (2):** Classification of various pathologies that occur in the sellar region. (**Molina and Ashman, 2010**).
- **Table (3):** WHO classification of pituitary adenomas. (**Tanase** *et al.*, **2012**).
- Table (4): Clinical features of acromegaly (Cordero and Barkan, 2008).
- Table (5): Clinical features of Cushing's disease. (Watson and Oldfield, 2006).
- **Table (6):** Symptoms and signs of pituitary insufficiency. (**Prabhakar and Shalet, 2006).**
- **Table (7):** Evolution of surgical Methods for Pituitary Tumors. (Laws, 2003).
- **Table (8):** Number of patients in each study group and the percent of participation in the study.
- **Table (9):** Mean age of patients in each study group.
- Table (10): Sex distribution of patients in each study group.
- **Table (11):** Different abnormal VF patterns before GK treatment.
- **Table (12):** Number of performed surgeries in relation to the number of patients.

Table (13): Mean time interval between the last surgery and Gamma Knife treatment for individual study groups.

Table (14): Mean residual tumor volume in each study group.

Table (15): Mean prescription dose for each individual study group.

Table (16): Mean integral dose for each individual study group.

Table (17): mean tumor coverage for each individual study group.

Table (18): Mean maximum dose to the visual pathway in each study group.

Table (19): Mean follow up period for each study group.

Table (20): Mean time to hormonal normalization and mean time to hormonal reduction in each study group.

Table (21): Correlation between the severity of visual field defects before GK treatment and visual changes (P-value 0.001).

LIST OF FIGURES

- **Figure (1):** Anterior view (left) and superior view (right) of the pituitary gland showing the relations of the gland to nearby structures. (**Rhoton, 2002**).
- **Figure (2):** Sagittal sections (left) and superior views (right) of the sellar region, showing the normal variants of optic chiasm. (**Rhoton**, **2002**).
- **Figure (3):** Six sagittal sections of the sellar region, showing variations in the intercavernous venous connections within the dura. **(Rhoton, 2002).**
- **Figure (4):** Types of sphenoid sinus pneumatization. Presellar pneumatization (right), sellar pneumatization (middle), and conchal pneumatization (left). (**Cappabianca and de Divitiis, 2004**).
- **Figure (5):** MR imaging of normal pituitary gland, T1-weighted images after contrast administration: Coronal plane (left) and sagittal plane (right). (Bladowska and Sasiadek, 2012).
- Figure (6): MR imaging of normal pituitary gland in sagittal planes in T1-weighted image (left) and T2-weighted image (right). The high signal intensity of the posterior lobe is clearly visible. (Bladowska and Sąsiadek, 2012).
- **Figure (7):** Knosp grading for cavernous sinus invasion by pituitary adenomas. (**Tanase** *et al.*, **2012**).
- **Figure (8):** Prolactin staining in sparsely granulated lactotroph adenoma. This tumor represents the vast majority of lactotroph adenomas. It shows a highly specific staining pattern for prolactin that is localized to the Golgi complex, but is not stored in cytoplasmic secretory granules. (**McCutcheon, 2007**).

- **Figure** (9): Left: Densely granulated somatotroph and mammosomatotroph adenomas show a perinuclear pattern of keratin. Right: Sparsely granulated somatotroph adenomas have a unique pattern of staining that identifies globular "fibrous bodies" (**McCutcheon, 2007**).
- Figure (10): A stepwise alghorism for diagnosis of Cushing's disease. (Zada, 2013).
- **Figure (11):** MRI of macroadenoma, T1 with contrast. Sagittal view (left): arrow shows pituitary tissue draped over tumor. Coronal view (right): arrow shows optic chiasm elevated by tumor. (**Chandler and Barkan, 2008**).
- Figure (12): MRI of microadenoma, T1 with contrast. Coronal view, arrow points to less enhancing tumor. (Chandler and Barkan, 2008).
- **Figure (13):** T1-weighted MR coronal unenhanced image. The high intensity area of hemorrhage within a macroadenoma is visible. **(Bladowska and Sasiadek, 2012).**
- **Figure (14):** T1-weighted MR coronal contrast-enhanced image. The complete encasement of the intracavernous part of the left internal carotid artery by the adenoma is visible. (**Bladowska and Sąsiadek, 2012**).
- Figure (15): A suggested stepwise algorism for treatment of different types of pituitary adenomas. (Lunsford et al., 2004).
- Figure (16): Skull base and nasal region demonstrating the approaches to the sellar region. (Chandler and Barkan, 2008).
- **Figure (17):** Photographs of Sir Victor Alexander Haden Horsley (A) and Robert Henry Clarke (B). (**Rahman** *et al.*, **2009**).

Figure (18): Photograph of Lars Leksell and his arc system. (Szeifert et al., 2007).

Figure (19): The plaster of Paris cap used for the first GK patient in 1967. (Szeifert *et al.*, 2007).

Figure (20): Photographs of Horsley and Clarke's stereotactic frames. (Rahman *et al.*, 2009).

Figure (21): Model 4-C gammaKnife unite. (Szeifert et al., 2007).

Figure (22): CyberKnife machine with a robotic arm with six joints. (**Romanelli** *et al.*, **2006**).

Figure (23): APS for patient robotic coordinate movement. (Szeifert et al., 2007).

Figure (24): LGK PFX radiation unit and collimator system. (A) Cross section of the LGK PFX radiation unit. (B) Detailed view of sectors; each sector holds 24 ⁶⁰Co sources and can be moved independent of other sectors in desired position to define a collimator size or to block beams. (C) Sector position which defines a 4 mm collimator. (D) Sector position which defines an 8 mm collimator. (E) Sector position which defines a 16 mm collimator. (Bhatnagar et al., **2009**).

Figure (25): Leksell stereotactic frame, model G with the posts attached in place.

Figure (26): Leksell stereotactic frame with the full set of screws and screw drivers.

Figure (27): The measurement bubble with the calibrated dipstick place into the top hole.

Figure (28): MRI indicator box.

Figure (29): Treatment plan snapshot showing the process of drawing of the risk zones (visual pathway).

Figure (30): Treatment plan showing the step of drawing the borders of the target tumor (in burble).

Figure (31): 3D reformatted image showing the relation of the target tumor to the visual pathway.

Figure (32): Positioning of the patient on the treatment couch.

Figure (33): The control console for Gamma Knife radiosurgery (Elekta).

Figure (34): 3D pie chart showing the percentage of patients in each study group.

Figure (35): 3D bar chart showing sex distribution for individual study groups.

Figure (36): 3D bar chart showing the three age groups and the distribution of patients into functioning and non functioning groups.

Figure (37): 3D bar chart showing the percentage of distribution of symptoms in each study group.

Figure (38): 3D bar chart showing the distribution of hormonal manifestations in prolactinoma group.

Figure (39): 3D bar chart showing the distribution of hormonal manifestations in acromegaly group.

Figure (40): 3D bar chart showing the distribution of hormonal manifestations in Cushing's disease group.

Figure (41): 3D bar chart showing the number of patients in the three groups according to the time interval between last surgery and GK treatment.

Figure (42): 3D bar chart showing the number of patients in three groups according to the residual tumor volume.

Figure (43): Radar graph showing the site distribution of the residual tumor tissue in the non functioning adenoma group.

Figure (44): Radar graph showing the site distribution of the residual tumor tissue in prolactinoma group.

Figure (45): Radar graph showing the site distribution of the residual tumor tissue in acromegaly group.

Figure (46): Radar graph showing the site distribution of the residual tumor tissue in Cushing's disease group.

Figure (47): 3D bar chart showing the number of patients in three groups according to the prescription dose.

Figure (48): 3D bar chart showing the number of patients in each group according to tumor coverage.

Figure (49): 3D bar chart showing the results of tumor volume changes in each study group.

Figure (50): 3D bar graph showing the correlation between patients' age and tumor volume changes (P-value 0.03).

Figure (51): 3D bar graph showing the correlation between patients' sex and tumor volume changes (P-value: 0.006).

- **Figure (52):** 3D bar chart showing the correlation between the prescription dose and the results of tumor volume changes (P-value: 0.001).
- **Figure (53):** 3D bar chart showing the results of hormonal changes in each study group.
- **Figure (54):** 3D bar graph showing the correlation between patients' age and hormonal changes (P-value: 0.05).
- **Figure (55):** 3D bar chart showing the correlation between hormonal control and improvement in clinical hormonal manifestations in different study groups.
- **Figure (56):** 3D bar chart showing the correlation between time interval between GK treatment last surgery and hormonal changes. (P-value: 0.009).
- **Figure (57):** 3D bar chart showing the correlation between prescription dose and hormonal changes (P-value 0.04).
- **Figure (58):** 3D bar chart showing the relation between medical treatment and hormonal control in prolactinoma group (P-value 0.003).
- **Figure (59):** Line chart showing the percentage of hormone level normalization at different follow up periods.
- **Figure (60):** Line chart showing the onset of hormone level reduction at different follow up periods.
- **Figure (61):** 3D pie chart showing visual field changes in patients with VF defect at the maximum follow up period available.

Figure (62): 3D bar chart the visual field changes in each study group.

Figure (63): 3D bar chart showing the correlation between patients' age and results of visual field changes (P- value: 0.01).

Figure (64): 3D bar chart showing the distribution of visual field changes in blind eyes and seeing eyes with partial field defect.

Figure (65): 3D bar chart showing the visual field changes in relation to tumor volume changes (P-value 0.01).

Figure (66): Patient I treatment plan.

Figure (67): Contrast enhanced MRI of the sellar region of patient I, coronal cuts, before GK treatment (left) and after 24 months follow up (right).

Figure (68): Computed visual field showing visual field findings of patient I before surgery (above), after surgery (middle), and 24 months after GK treatment (below).

Figure (69): Patient II treatment plan.

Figure (70): Contrast enhanced MRI coronal cuts for patient II showing residual tumor volume before GK treatment (left) and follow up 36 months after treatment (right).

Figure (71): Computed visual field of patient II showing normal visual fields before GK treatment and 36 months after treatment.

Figure (72): Patient III treatment plan.

Figure (73): Contrast enhanced MRI of the sellar region, coronal cuts of patient III showing a residual sellar and supra sellar tumor before GK treatment (left) and 36 months after treatment (right).

Figure (74): Computed visual fields of patient III before GK treatment (above) and 36 months after treatment (below).

Figure (75): Patient IV treatment plan.

Figure (76): Contrast enhanced MRI of the sellar region of patient IV, coronal cuts, showing the right parasellar residual tumor before GK treatment (left) and after 24 months follow up (right).

Figure (77): Computed visual field of patient IV showing normal VF before treatment (above) and 24 months after treatment (below).

REVIEW OF LITERATURE