Combined X-Ray spectrometry and neutron activation analysis for the study of rare earth elements in Egyptian ores

Thesis

العالق

Submitted for Degree of Doctor of Philosophy

In Physics

рà

Wafaa Mahmoud Mohamed Mousa

Master in Science

537.5352 W. H

Supervising Committe

Prof. Dr. Aida El-Beily

Head of Physics Departmet
Faculty of Girls for Art, Science & Education
Ain Shams University

Prof. Dr. Hasan Raafat Ahmed Radiation Technology Center Prof. Dr. Laila Altia Guirgis
Nuclear Materials Corporation
Cairo, Egypt

u8515

Ain Shams University
Faculty of Girls
for Art, Science and Education

Name of Student: Waffa Mahmoud Mohamed Mousa

"Master in Science"

Title of Thesis: Combined X-Ray spectrometry and neutron activation analysis for the study of rare earth elements in Egyptian ores

Supervising Committe...

Prof. Dr. Aida El-Beily Head of Physics Departmet aculty of Girls for Art. Science & Educati

Faculty of Girls for Art, Science & Education
Ain Shams University

Prof. Dr. Hasan Raaft Ahmed Radiation Technology Center

Prof. Dr. Laila Allia Guirgis
Nuclear Materials Corporation
Cuiro, Egypt

Hassan Ragfat

A.B. El. Braly

L. A. Ruguis

Approval Stamp:

Approval of Faculty Council

Date of Approval: / / 199
Approval of University Council

ACKNOWLDGEMENT

I would like to express my gratiude to those who supervised my work:

- 1 Prof. Dr. Aida El Beily Head of physics department faculty of girls for art, science and education ain shams university.
- 2 Prof . Dr . Laila Attia Guirgis

 Nuclear materials corporation Cairo ,Egypt
- 3 Prof. Dr. Hasan Raaft Ahmed Radiation technology center

Contents	Page
AKNOWLEDGEMENT	
ABSTRACT	
SUMMARY	
CHAPTER I	
INTRODUCTION	
1.1 Review on the physical techniques for determination of REE	
in geological materials.	1
1.1.1 Optical emisson spectroscopy.	2
1.1.2 Neutron activation method.	4
1.1.3 X-ray fluorescence spectrometry	6
I.1.4 Mass spectrometry method	9
1.1.5 Inductively coupled plasma atomic emission spectrometry	13
1.1.6 Other methods.	15
1.2 Review on the REE determination Egyptian phosphates	18
Aim of the present work	22
CHAPTER II	
Theoritical Background	23
2.1 Neutron activation analysis	23
2.1.1 General equation	23
2.1.2 Reactor neutron activation analysis	26
2.1.2.a Fast flux	27

.*

2.1.2.b Thermal flux	28
2.1.2.c Epithermal flux	28
2.1.2.d Reaction rates for (n, γ) activation.	29
2.1.3 Standardization	31
2.1.3.a Absolute method	31
2.1.3.b Relative method	32
2.1.3.c Single comparator	35
2.1.3.d Standardization method	36
2.1.4 Interfering nuclear reaction.	36
2.1.4.a Thershold reactions.	36
2.1.4.b Fission reactions	37
2.1.4.c Second order reactions	38
2.2 X-ray spectrometry	41
2.2.1 General statement about X-ray spectrometry	41
2.2.2 Production of X-ray	42
2.2.3 Production of continuous radiation in an x-ray tube	43
2.2.4 Production of characteristic radiation in an X-ray tube	45
2.2.5 The passage of X-ray through matter.	52
2.2.6 Absorption of X-rays	52
2.2.7 Scattering of X-rays.	56
2.2.8 Excitation of Fluorescent radiation in the sample	58

..

CHAPTER III

NEUTRON ACTIVATION ANALYSIS

3.1 Experimental work	62
3.2 Irradiation	66
3.2.1 Description of the Rabbit Pneumatic Transfer System (RPTS) using the (ET-RR-1)	66
3.2.2 Reactors as neutron source for long irradation	68
3.3.1 The Gamma-Ray detection systems	71
A. The Germanium Detector.	71
B. The Pre-Amplifier.	72
C. The Spectroscopy Amplifier.	72
D. Multichannel pulse hight analyzer.	73
3.3.2 Calibration of Gamma-Ray spectrometer	75
3.3.3 Efficiency calibration.	76
3.3.4 Energy resolution.	79
3.3.5 Analytical condition.	83
3.4 Results and Discussion	84
3.4.1 Half-life determination.	85
I. Short irradiation	87
a)Determination of Gadolinium	87
b) " Samarium	90
c) " Dyspresium	01

II. Long time irradiation.	94
A) Determination of Lanthanum	94
B) " Neodymium	94
C) " Cerium, Europium, Terbium Thalium Lutetium	
and Yetterbium	97
CHAPTER IV	
X-RAY FLUORESCENCE ANALYSIS	
4.1 Instrumentation and selection of operating conditions.	171
4.2 Sample preparation	177
4.3. Method of analysis.	178
4.3.1 Use of scattered tube lines	178
4.4 Quantitative analysis	180
4.4.1 Determination of Lanthanium	180
4.4.2 ,, Yttrium	181
4.4.3 ,, Cerium	181
CHAPTER V	
EMISSION SPECTROGRAPHIC ANALYSIS	
I. Chemical and Physical preparations of the sample.	183
II. Excitation procedures.	184
III Optical and speetragraphic	184
IV Photographic techniques.	184
5.1 Experimanetal work.	185
5.1.1 The problem of Cyanogen Bands.	186

5.1.2 The analytical electrode.	187
5.1.3 Preparation of synthetic standard.	190
5.1.4 Construction of the working curves.	191
5.1.5 Detection limit.	192
CHAPTER VI	
CONCLUSIONS	201
REFERENCES	207

List of Tables

Table 1	Irradiation and counting. Sequence	63
Table 2	Important interfering photo peaks and reference	
	correction peaks	64
Table 3	Selected data on REE isotopes.	65
Table 4	γ-ray enrgies and intensities as standard in energy calibration and efficiency	77
Table 5	Concentration of REE in internationl phosphate standards.	86
Table 6	The accuracy of Gd determination by neutron activation analysis	90
Table 7	The accuracy of Samarium determinate	93
Table 8	Concentration of Ce, Eu, Tb, Tm, Lu and Yb determination.	100
Table 9	Concentration of La by x-ray spectrometry	180
Table 10	Concentration of Y by x-ray spectrometry	181
Table 11	Concentration of Ce by x-ray spectrometry	182
Table.12	Concentration of REE using Atomic Emission	
	Spectroscopy.	193
Table 13	Analytical lines and detection limits for REEs	194
Table 14	Comparative analytical results of the studied phosphate	
	samples by the three techniques INAA, XRF and	
	A.E.S	195

List of Figures

Fig. 1	Continuous X-ray spectra of tungsten at various voltages.	40
Fig. 2	Continuous X-ray spectra from several X-ray target	
	elements.	40
Fig. 3	X-ray spectrum of molybdenum as a function of the	
	applied voltage and characteristic radiation	48
Fig. 4	A partial energy level diagram showing the transitions	
	leading to the K and L series lines.	50
Fig. 5	Mass absorption coefficient and the absorption edges for	
	tungsten.	54
Fig. 6	Schematic diagram of the rabbit pneumatic transfer	
	system	67
Fig. 7	Schematic diagram of the reactor.	70
Fig. 8	Block diagram of gamma-ray spectrometer	74
Fig .9	Energy calibration curve of HP Ge detector	78
Fig. 10	Efficiency calibration curve of HP germanium detector	86
Fig. 11	Relation between RC and energy resolution	82
Fig. 12	2 Half life determination of La ¹⁴⁰	88
Fig. 13	3 Working curve for Gd using γ-ray line at 361 keV	89
Fig. 14	4 Working curve for Sm using γ-ray at line at 104.2 keV	92
Fig. 18	5 Gamma-Ray spectrum of La ¹⁴⁰ at 1596 keV	9:
Fig. 10	6 Gamma-Ray spectrum of Nd ¹⁴⁷ at 91.1 keV	98
Fig. 1	7 Gamma-Ray spectrum of standard phosphate 1	10

Fig. 18	Gamma-Ray spectrum of standard phosphate 3	111
Fig. 19	Gamma-Ray spectrum of Abu-Tartour original sample.	121
Fig. 20	Gamma-Ray spectrum of Abu-Tartour concentrated sample.	131
Fig. 21	Gamma-Ray spectrum of Sebayia West phosphate sample.	141
Fig. 22	Gamma-Ray spectrum of Sebayia East phosphate sample.	151
Fig. 23	Gamma-Ray spectrum of El-Hamrawien phosphate sample.	161
Fig. 24	Basic geometry of wavelength dispersive x-ray spectrometry.	172
Fig. 25	The diffracted of a polychromatic beam though the crystal.	173
Fig. 26	Choice of crystal, collimators, and detectors as a function of wavelength	175
Fig. 27	Tungesten electrode shape as a pellet.	188
Fig. 28	Tungesten electrode shape	189
Fig.29	Working curve for La and Y.	196
Fig. 30	Working curve for Tb and Yb	197
Fig. 31	Working curve for Gd and Nd.	198
Fig. 32	Working curve for Ce and Sm.	199
Fig. 33	Working curve for Pr	200

Abstract

In this work the rare earth elements were quantitatively determined in phosphate ore samples, by three techniques, this techniques are neutron activation analysis, X-ray fluorscence spectrometry and atomic emission spectrographic analysis.

Summary

Summary

The aim of present work is to elaborate and develop a practical non destructive method for the quantitive analysis of rare earth elements in ores.

It is well known that due to the close similarities in properties of these elements they always interfere with each other and require tedious chemical separation and concenteration before their accurate determination.

As an example of Egyptian ores some representative phosphate ore samples from different localitiles in Egypt, namely Wadi El Nile, Red Sea, and Abu Tartour plateau have been chosen for this study. In fact the group of rare earth elements are expected to be found in these ores in varying concentration depending on the physicochemical composition prevailing during deposition of these ores. Accordingly we can deal with varying concentrations of each REE in each of the studied sample localities in a more or less different matrix of the major and minor elements in each ore sample.

During this work the REE are determined by three techniques:

- 1- Non destructive neutron activation analysis.
- 2- X-ray fluoresence analysis.
- 3- Atomic emission spectrographic analysis.