B' DINSMUC

230

M. Sc. COURSES

2

STUDIED BY THE AUTHER (OCTOBER 1977 - OCT)

- (i) Theory of atomic collisions, 3 hours weekly.
- (ii) Mechanics of continuous medium,
 3 hours weekly.
- (iii)Ordinary differential equations,
 3 hours weekly.

ON SCATTERING OF THE & MESONS

Thesis submitted in partial Fulfilment for the degree of M. Sc. (App. Math.)

By

HOSSAM IBRAHIM AHMED HASSAN

Math. Dept. Faculty of Science
SUEZ GANAL UNIVERSITY

To
Math. Dept. Women's College
Ain Shams University

Supervised by
Dr. F. A. AYOUB Ass. Prof.
Ain Shams University

523 81 N.J.

1980

026

INTRODUCTION

1- Historical concepts:

Measurements by Rassi in 1932 on the absorption properties of the cosmic radiation showed the existence of two main components, the "hard", or penetrating, component and the "soft", or easily absorbed, component. Coloud chamber experiments soon identified the soft component with electrons but the penetrating particles proved to be more difficult to identify. The possibility of their being protons was soon ruled out by consistency in the values of their ionization when observed in cloud chambers. There was an objection to the penetrating particles being electrons and positions.

All the difficulties disappeared with the postulate that the penetrating particles consisted of particles of mass intermediate between that of the electron and the proton. Laters, the particles termed M - mesons (muons)

The fluxes of particles of different types of cosmic ray depend on the latitude, their energy, and the conditions of measurement. Very approximately, about 75% of all particles at sea-level are penetrating, and are muons

The decay of pions (w mesons) into muons and neutrinos is the source of most muons in nature. Pions are not

2- Static Broperties of the Muon 1-

A- Introduction 1-

The static properties of the muon - its mass, charge, and magnetic moment - are determined by three independent types of observation, which interact to yield the required parameters.

(a) The magnetic moment experiment: The spin pression frequency of a positive muon f_M is compared to that of the proton f_p in a magnetic field. This experiment yields the muon g factor:

in terms of the proton g factor, ratio of muon to proton mass, and the ratio of proton to muon charge.

A chronological tabulation of magnetic moment results is listed in Table 1.

Table - 1 : Magnetic moment determination (muon to proton magnetic ratio).

1			
Date	Reference	Method	Rosp 14
2/1 5/16	Mark Charles		3.20038
And the second s	. 7821010821		1.00004
	Carrie	74.44 (1.2 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3	2.00
and the state of t	Swaperate.	And the second s	
er de la companya de			4.0000025
Average	ergr includes	scale factor of	±.0000034

(b) The anomalous moment experiment : The change in polarisation angle (angle between the spin and momentum) of muons stored in a magnetic field B for a time t is a direct measure of the magnetic moment anomaly :

$$\frac{a-2}{2} = \frac{0 (t) - 0 (0)}{(l/a_{st}) 3t}$$
 (2)

Table - 2 : Chromological tabulation of muon amountous magnetic moment $g_{\mu\nu}$ (units : 10^{-6} e/2m $_{\mu\nu}$)

Date	Peference	liethed	Result
5/1 969	Pailey	Counters+storage rings.	1165.75 ± .71
11/1975	Beiley	Counters+storage	1165.895 ± 027
11/1977	Badhay	Comtero eterage	1165.922 ± 009
Average (Error includes	scale factor of 1.	0) 1165.9222±009

which are isotropically distributed. The only explanation of the observed asymmetry is that parity is not conserved in the decay. Thus two-results appear from this observation. The massa were longitudinally polarised and parity is not conserved in mean decay.

D- Marie Continue in

restical difficulties. All descriptions of the property of the

(1) Do transfer (1)

into 18 stands orbitals around musled. If the muon is captured by a proton at rest, the resulting neutron recoils with kinetic energy of about 5 or 6 Nov. In side a nucleus the Pauli principle will for bid such a recoil unless the neutron goes into a state outside the already occupied states. In terms of a formi gas model, the recoil momentum is about 100 Mov./C, compared to the radius of the formic sphere of roughly 200 Mov/C. Some excitation energy(~ 10 or 20 Mov). Is imported to the nucleus, but the major part of the masse's rest emergy goes to the neutrino.

The capture rate $1/T_{\rm p}$, is a mode of decay added to the natural decay of the mann. Compagnitar, the charmed decay rate for bounded negative muon is :

there T_{st} is the men lifetime of the free man.

CHAPTER (1)

(CHAPTER I)

PRANCAMENTE COLLEGE

1- Collisions between Massive Perticles 1-

By mastive particles we mean particles of mass large compared with that of an electron, such as atoms, of -- particles, etc.

1.1. Slaw collisions involving masons and strongs particles

A wide range of new collision phonousus has been emposed through the discovery of the unstable particle plons, mone, K-mesons, and hyperes, Although these particles are all sphere ral they have mean lifetime (remains from 10-6 to 10"10 sec.) less enough to make so many encounters with the atoms of the matter through which they your that their entugies are reduced to see thermal values before they decay. The last stages in the life of a stronge particle may involve may recent a cro on the form of one of two typest the pe of fight manager particles through matter and o reactions. From the point of view of solitaion there are interesting differences be

one to obtain information about reaction rates in such cases it is clear that a new challenge on a wide front is present to atomic collision theory.

1.2. Slow collisions involving A -mesons 1-

Considerable interest attaches to a knowledge of eress - sections for certain collision processes involving M -mesons or muons.

In this respect a positive muon is essentially similar in its behaviour to a proton, but the fact that its mass is nine times smaller can be expected to lead to certain new effects. Thus the proton plays a special part in chemical reactions through the so-called hydrogen bond, which owes its importance to the relatively small mass of the proton. We can expect that muons will be considerably more effective in chemical reactions.

2. Hardman cross-section for given engular memorities

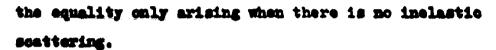
In the study of the scattering of a streem of particles by a centre of force, the great majority of collision phenomens, however involving seem reaction of the scatterer. In such case there is a direct energy interchange between the relative translational motion and the internal motion of the collision systems. There is no transfer of particles between the collision systems impact; this however occurs in a collision of matter accurs in a collision systems of collision which are called reactive response to collisions.

the sellisions include the following :-

- Chapter parts of the same and the same at the same at
- 2) mercelon of possible of the incident medical.

Owing to the complexity of the phenomena even when considering direct collisions only, it is necessary, except in very special cases, to use approximate methods of treatment.

Valid under general conditions. They may be used to place limits on the sise of the cross-sections and to provide check on results obtained by approximate methods. We begin by considering these theorems.


we shall consider for simplicity the impact of spinless particles of mass m and speed V with a scattering centre.

As usual we resolve the incident wave into partial waves of angular momentum \[\left(\left(+1) \right) \right\]. The new feature which we now include is the possibility of inelastic collisions occurring. However, the asymptotic form of the radial wave function for the particles of energy \(\left\) m \(\vec{V}^2 \) can be written as:

 $(kr)^{-1} \qquad i \qquad (2 + 1) \sin (kr - \frac{lw}{2}) + C \qquad \frac{e^{ilw}}{r}$ where k = wv/h. The partial elastic scattering cross section is then given by:

$$Q_{\ell}^{-1} = \frac{4^{-17}}{(2\ell+1)} | Q |^2$$
.

Because inelastic collisions may occur the out ward radiflux of particles of speed v will be less than the insufflux by an amount:

.. Further

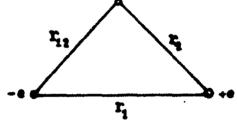
< 9 - (9t) 2 / 9 max...

The maximum value of the right - hand side occurse when

of - X office

80 1

$$q^{2n} \leqslant \frac{\pi}{k^2} (2\ell+1)$$


In this case, the equality only arises when Q_{μ} is also equal to

T (2 / 41)/k2 .

3. The two state approximation :-

In order to clear the method which must be employed in dealing with inelastic collisions, we first consider the simplest type of collision which occurs in practice, that of electrons with hydrogen atoms. The mass of the electron is small compared with that of the proton, and the motion of the latter in the collision each be neglected. We shall assume that the incident and atomic electron are distinguishable.

Pigure -1

The wave equation for the system of incident electron and atom is:

r_l , r₂ and r_{l2} are as shown in Figure-1. The energy is :

$$B = 3m v^2 + E_H^2.$$

In the energy of the atomic electron in its ground state, while reliablity of the incident electron.

We may expect the function $\psi'(\underline{x}_1, \underline{x}_2)$ in the for m: $\psi'(\underline{x}_1, \underline{x}_2) = (\sum + \int) \psi'_n(\underline{x}_2) P_n(\underline{x}_1) . \quad (1-2)$