ON ELEMENTARY PARTICLES

Thesis Submitted

To

University College for Women
Ain Shams University
Presented as Partial Fulfilment

For
The Degree of Master of Science
(Physics)

7579

Ву

Bothina Ragheb & Ezaby

Physics Department

University College for Women

1976

ACKROULEDGHENT

The author would like to record his thanks to Professor M.A. Kenawy Head of Physics Department University College for Women, Ain Shans University for his constant encouragement during this work.

I wish to express my sincere gratitude to Professor M.A.MAHROUS and Dr. N.M.El-SAMRA for their encouragement for me.

I also express my deep thanks to Dr.A.M.ELNATEM for his useful discussion, constant advice and encouragement which were offered to me throughout every stage of this work. His devotion to work and high interest in research has always been a great example for me.

I thanks also Dr. A.B.EL-BIALY for her help in revising the thesis.

I am greatly indebted to Miss N. EL-MAHDY and to the IBM-1130 group, Ain Shams University for running the programs.

A special acknowledgment goes to my mother and my husband.

CONTENTS

A TOTAL TITLE AS FORMAL	Page
AKNOW LED GMENT	
SUMMARY	
CHAPTER I	
INTRODUCTION	1
CHAPTER II	
Single Particle States	4
II.1- Theory of Bound States	7
II.1.1- The Potential Calculation	7
II.1.2- Calculation of Energy	11
II.2- Unbound States	12
II.2.1- Calculation of Potential Depth V	13
II.2.2- Oalculation of Energy	13
CHAPTER III	
Method of Calculation	1 5
III.1- Bound States	15
III.2- Unbound States	22
OHAPTER IV	
Neutron in Resonance States	27
IV.1- Elastic Scattering Cross Section	28
IV.2- Resonance Cross Section	34
IV.2.1- Isolated Levels	36

		Page
IV.2.2-	Statistical Model	 44
IV.3-	Spectroscopic Factor	46
IV.4-	Single Particle Half Width	50
	CHAPTER Y	
Results:	and Discussion	53
V.1- Box	und States	53
V.2- Uni	bound States	7 0
REFERENCI	SS	83
ARABIC ST	IMMARY.	

SUMMARY

The study of single particle transition in bound states for both protons and neutrons has been done, on the basis of Shell model calculations. A Saxon - wood potential with spin orbit coupling and Coulomb potential in case of protons has been used. Study of isolated resonance states in case of neutrons has been discussed. The single particle half width and the spectroscopic factor in case of stripping reaction due to the capture of single neutron has been also given.

Two fortran programms SPUBS and TOK have been written for IBM 1130 Ain Shams University and they have been used to obtain the following results.

- 1- The programm SPUBS calculates for both protons and neutrons the energy and the normalized wave function for a certain bound state if the potential depth is given. Also it calculates the potential depth and the normalized wave function if the energy of the single particle in the given bound state is known.
- 2- The normalized wave function of bound states could be used as a form factor for DVBA calculations.

- 3- The charge of energy levels with mass number between A = 20, 40, 60, 80, 100 for both single proton and neutron for bound states is given and shows the magic number property of nuclei.
- 4- The effect of spin-orbit couppling is also studied for A = 100 and $V_{8.0} = 0$, 4.825, 9.65, 14.475, 19.3 MeV. The interference between levels increases by decreasing the binding energy.
- 5- As the binding energy decreases the wave function decreases slowly with the nucler radius R. Therefore one must increase the range of integration for weakly bound state in order to obtain reasonable form factor.
- 6- It was possible to prove that, one cannot calculate the required energy of the unbound or resonance state, if the potential depth is given while the opposite result is possible. SPUBS is also used to calculate the potential depth and also the normali ed wave function required for the known resonance state with phase shift $\hat{\theta} = \frac{\pi}{2}$
- 7- Compound elastic scattering cross section is calculated and by comparing with the elastic scattering cross section, one can find the single particle half width app. The programm TOK is used to

calculate $T_{s,p}$ for the $\operatorname{Id}_{3/2}^+$ resonance state with $E_{res} = 0.93$ MeV in $0^{16} + n$ reaction. It has the value 110 KeV using the same parameters which are given from SPUBS.

- The shape of wave functions at resonance energy and at $E_n = 0.83$ MeV, $E_n = 1.3$ MeV show the resonance maximum amplitude at $E_n = 0.93$ MeV.
- 9- The spectroscopic factor S for the state $\operatorname{id}_{3/2}^+$ in 0^{17} is found to be \sim 0.8 by taking Γ_{el} from experimental result, which is in a good agreement with that calculated using DWBA method for 0^{15} (d,p) 0^{17} reaction.

CHAPTER I

CHAPTER I

INTRODUCTION

The fundamental types of elementary particles are both protens and neutrons. They are the strong stones in the structure of each material, since they are the main parts in each nucleus. But according to the short range property of nuclear forces, there is many assumptions which have been used to discuss the nuclear forces. These assumptions had led to the so called nuclear models. One of them is the shell model. In this model, one considers the nucleons to move independently in an average potential. This model is successfully used to account for various regularities in nuclear properties.

However, there is two ways to study the nuclear structure. One is the use of nuclear models by assuming a certain form for nuclear potential and try to solve Schrödinger's equation to obtain the energies and wave functions. The other way is to use the nuclear reactions method. This means that from the knowledge of energy levels and angular distributions for the outgoing particles, one can obtain theoretically the required nuclear parameters for experimental results.

In the present work, one has used the last two methods for the study of structure of some nuclei using the shell model for the first case and the elastic scattering in the second method.

Now assuming that the target to be consists of a closed core plus one particle, then the nuclear properties of that nucleus depends mainly on the energy and wave function of the single particle. This condition is also similar to the capture of a single nucleon by a target which is assumed to be always in the ground state. Actually if that particle is found in a bound state then, it is necessary to know its energy and wave function in a certain state, if the average potential depth through which it moves is given. Also if the energy of that bound state is known, one can get the required potential depth and also the normalized wave function.

It is interesting to show the required changes, if the single particle is excited to unbound or resonance states. It is proved that one can not calculate the required energy of the resonance state if the potential depth is known while if the energy is known, one can calculate the potential. This will be given in more details in chapter II. The method of calculation and the numerical technique is also given in chapter III.

states due to the formation of a compound nucleus, then after a certain time Tit decays into different modes, one can obtain the elastic scattering cross section and the inclastic or reaction cross section in terms of the elastic or inclastic half width respectively. Actually from the structure point of view, and by considering only the elastic channel to be opend, then the compound half width will reduce to the elastic scattering half width. Consequently the relation between the elastic half width and the single particle half width calculated from shell model gives the spectroscopic factor for isolated resonance states. The last problems have been discussed in the present work in chapter IV.

Two Fortran programs have been written for IBM 1130 Ain Shams University to make the available calculations for single particle in bound and resonance states. In chapter V the results of calculations on both bound and unbound states introducing different effects such as spin-orbit couppling, nuclear radius, potential depth etc. are given. Also applications on the single particle in $1d_{3/2}^+$ resonance ctate in 0^{17} and on 10^{15} n for 10^{17} and 10^{15} n for 10^{15} n for 10^{15} and 10^{15} n for 10^{15} n fo

CHAPTER II SINGLE PARTICLE STATES

CHAPTER II

SINGLE PARTICLE STATES

The success of shell model in satisfying the magic numbers 2, 8, 20, 28, 50, ... for both protons and neutrons, gives the possibility to assume that the structure of nuclei could be discussed by using the single particle model. (7),13)

These particles could be found inside the nucleus under the Fermi energy i.e. in bound states or above the binding energy region i.e. in the unbound or resonance states.

To study these different types of states, one should solve Schrodinger's equation to find either the energy or the potential and also the wave function corresponding to these types.

Now since Schrödinger's equation of the nucleus with energy E is given by (6), (7)

where
$$H = (\sum_{i} - \frac{\hbar^{2}}{2 \mu} \nabla_{i}^{2}) + \frac{1}{2} (\sum_{i \neq j} V(r_{ij}))$$

where the summation is taken over all number of particles. Also the potential is

$$\frac{1}{2} \sum_{i} V_{i,j} = \sum_{i} V_{i} + \frac{1}{2} \sum_{i \neq j} V_{i,j} - \sum_{i} V_{i}$$

$$\therefore H = \sum_{i} \left(-\frac{h^{2}}{2 \pi} \nabla_{i}^{2} + V_{i} \right) + \left(\frac{1}{2} \sum_{i \neq j} V_{i,j} - \sum_{i} V_{i} \right)$$

The residual interaction

$$V_{R} = \frac{1}{2} V_{1} - \frac{\sum_{i} V_{1}}{2}$$

Taking
$$\sum_{i} \left(-\frac{h^2}{2 \mu} \nabla_i^2 + V_i\right) = H_0$$

$$\cdot \cdot \cdot H = H_o + V_R$$

where
$$\mathbf{F} \leftarrow \mathbf{H}_{0} \rightarrow \mathbf{E}_{0} \rightarrow \mathbf{E}_{0}$$
 (1)

neglecting the effect of the residual interaction i.e. taking $V_R \longrightarrow$ o for single particle model, then equation (1) represents the equation to be solved by assuming that the single particle moving in an average potential $V(r) = \sum_i V_i$ with energy $E_0 = E$.

The wave function ψ_0 is actually related to the wave function of that single particle $\psi_s(\bar{r})$ in the residual nucleus (A-1) is

$$\Psi_{o}(\bar{z}, \xi) = \Psi_{g}(\bar{z}) \Psi_{(A-1)}(\bar{\xi})$$