The Role of Soluble Cluster of Differentiation 163 in Portal Hypertension

Thesis

Submitted for Partial Fulfillment of Master Degree **in Internal Medicine**

*B*y:

Mazen Moussa AbdelHamid

MB.B.Ch. Ain Shams University, 2009

Under Supervision of

Prof. Dr. Tarek Maged El-Saqaty

Professor of Internal Medicine and Gastroenterology Faculty of Medicine, Ain Shams University

Dr. George Safwat Ryad

Assistant Professor of Internal Medicine and Gastroenterology Faculty of Medicine, Ain Shams University

Dr. Sameh Ahmed Abdelbary

Assistant Professor of Internal Medicine and Gastroenterology Faculty of Medicine, Ain Shams University

> Faculty of Medicine Ain Shams University 2015

سورة البقرة الآية: ٣٢

Acknowledgement

First of all, all gratitude is due to **God** almighty for blessing this work, until it has reached its end, as a part of his generous help, throughout my life.

Really I can hardly find the words to express my gratitude to **Prof. Dr. Tarek Maged El-Saqaty**, Professor of Internal Medicine and Gastroenterology, faculty of medicine, Ain Shams University, for his supervision, continuous help, encouragement throughout this work and tremendous effort he has done in the meticulous revision of the whole work. It is a great honor to work under his guidance and supervision.

I would like also to express my sincere appreciation and gratitude to **Dr. George Safwat Ryad**, Assistant Professor of Internal Medicine and Gastroenterology, faculty of medicine, Ain Shams University, for his continuous directions and support throughout the whole work.

I am deeply indebted to **Dr. Sameh Ahmed Abdelbary**, Assistant Professor of Internal Medicine and Gastroenterology, Faculty of Medicine, Ain Shams University for his helpful guidance and honest effort that assisted me to finish this scientific work.

Last but not least, I dedicate this work to my family, whom without their sincere emotional support, pushing me forward this work would not have ever been completed.

Contents

List of Abbreviations	i
List of Tables	ii
List of Figures	iii
Introduction and Aim of the Work	1
Review of Literature	3
* Portal Hypertension	4
* Cluster of Differentiation (CD 163)	
Patients and Methods	61
Results	69
Discussion	96
Summary	100
Conclusion	102
Recommendations	103
References	104
Arabic Summary	

List of Abbreviations

ADC : Antibody drug conjugate
ADH : Anti diuretic hormone
ALP : Alkaline phosphatase
ALT : Alanine aminotransferase
ASFV : African swine fever virus
AST : Aspartate aminotransferase

BUN : Blood urea nitrogen CBC : Complete blood count

CI : Cardiac index

CSPH : Clinically significant portal hypertension

CT : Computed tomography
CD : Cluster of Differentiaiton

D.Bil : Direct bilirubinDM : Diabetes mellitus

EDHF : Endothelium-derived hyperpolarizing factor

ELISA : Enzyme linked immunosorbent assay eNOS : Enzyme endothelial NO synthase

ET-1 : Endothelin-1

EVL : Endoscopic variceal band ligation

FHVP : Free hepatic vein pressure

GAVE : Gastropathy and gastric antral vascular

ectasia

GGT : Gamma glutamyl transpeptidase

Hb : Hemoglobin

HBsAg : Hepatitis B surface antigen

HCAb : Hepatitis C serum antibody using ELISAHE : Management of hepatic encephalopathy

HO-1 : Heme oxygenase -1

Hp-Hb : Haptoglobin-hemoglobinHRP : Horseradish peroxidaseHRS : Hepatorenal syndrome

HSCs : Hepatic cells, such as hepatic stellate cells

HVPG : Hepatic vein pressure gradient

List of Abbreviations (Cont.)

HVPG : Hepatic venous pressure gradient INR : International normalization Ratio

LLD : Limit of detection

LVP : Large volume paracentesis MAP : Mean arterial pressure

MRE : Magnetic resonance elastography

MRI : Magnetic resonance imaging

NO : Nitric oxide

NSBB : Non selective beta blockers

PHG : Portal hypertensive gastropathy

PHT : Portal hypertension
PIGF : Placental growth factor

PRRSV : Porcine reproductive and respiratory

syndrome virus

PT : Prothombin time

RAAS : Renin angiotensin aldosterone system

SRCR : Scavenger receptor cysteine-rich

SST : Serum separator tube TE : Transient elastography

TIPS : Transjugular intrahepatic portosystemic

shunt

VEGF : Vascular endothelial growth factor WHVP : Wedged hepatic venous pressure

List of tables

Table	Title	Page
1	Classification of portal hypertension	7
2	Primary prophylaxis and secondary prophylaxis of variceal hemorrhage	30
3	Vasoactive agents used in the	36
3	management of acute hemorrhage	30
4	Classification of patients according to	70
•	Child score	, 0
5	PHG in the study patients	71
6	Comparison between the studied groups regarding age	72
7	Comparison between the studied groups regarding sex	73
8	Comparison between the studied groups regarding AST	74
9	Comparison between the studied groups regarding ALT	75
10	Comparison between the studied groups regarding total bilirubin	76
11	Comparison between the studied groups regarding total bilirubin	77
12	Comparison between the studied groups regarding albumin	78
13	Comparison between the studied groups regarding BUN	79
14	Comparison between the studied groups regarding serum creatinine	80
15	Comparison between the studied groups regarding serum sodium	81
16	Comparison between the studied groups regarding INR	82

List of tables (Cont.)

Table	Title	Page
17	Comparison between the studied groups regarding hemoglobin	83
18	Comparison between the studied groups regarding TLC	84
19	Comparison between the studied groups regarding platelets	85
20	Comparison between the studied groups regarding portal vein diameter	86
21	Comparison between the studied groups regarding sCD	87
22	Patients sCD 163 levels as regard sex	88
23	Patients sCD 163 levels as regard ascites	89
24	Patients sCD 163 levels as regard encephalopathy	90
25	Patients sCD 163 levels as regard upper GI bleeding	91
26	Patients sCD 163 levels as regard Child class	92
27	Correlation between Scd163 levels and other study parameters	93

List of Figures

	Dist of Figures	
Fig.	Title	Page
1	Schematic representation of the portal	4
	and hepatic venous system	
2	Portal hypertension leads to the	9
	development of the hyperdynamic	
	circulatory syndrome, characterized by	
	decreased mean arterial pressure (MAP),	
	decreased systemic vascular resistance	
	(SVR), and increased cardiac index (CI)	
3	Activated HSCs in liver cirrhosis	12
	increase intrahepatic vascular resistance	
4	Advantages (PROs) and drawbacks	33
	(CONs) of pharmacological and	
	endoscopic therapeutic modalities for the	
	prophylaxis of variceal bleeding in	
	cirrhotic patients	
5	Scavenger receptor cysteine-rich	47
	(SRCR) class B family membrane	
	protein members	
6	CD163-mediated scavenging of Hb upon	52
	intravascular hemolysis	
7	A disintegrin and metalloproteinase 17	57
	(ADAM17)/tumor necrosis factor	
	(TNF) - α converting enzyme $(TACE)$ -	
	mediated shedding of CD163 and TNF-α	
	upon stimulation by proinflammatory	
	stimuli	
8	Using CD163 as a target for directed	60
	drug delivery	- ^
9	Classification of patients according to	70
	child score	

10	PHG in the study patients	71
10	Tite in the staay patients	, , -

List of Figures (Cont.)

Fig.	Title	Page
11	Comparison between the studied groups	72
	regarding age	
12	Comparison between the studied groups regarding sex	73
13	Comparison between the studied groups regarding AST	74
14	Comparison between the studied groups regarding ALT	75
15	Comparison between the studied groups regarding total bilirubin	76
16	Comparison between the studied groups regarding total bilirubin	77
17	Comparison between the studied groups regarding albumin	78
18	Comparison between the studied groups regarding BUN	79
19	Comparison between the studied groups regarding serum creatinine	80
20	Comparison between the studied groups regarding serum sodium	81
21	Comparison between the studied groups regarding INR	82
22	Comparison between the studied groups regarding hemoglobin	83
23	Comparison between the studied groups regarding TLC	84
24	Comparison between the studied groups regarding platelets	85

25	Comparison between the studied groups	86
	regarding portal vein diameter	

List of Figures (Cont.)

Fig.	Title	Page
26	Comparison between the studied groups	87
	regarding Scd	
27	Comparison between the studied groups	88
	regarding sCD	
28	Patients sCD 163 levels as regard ascites	89
29	Patients sCD 163 levels as regard	90
	encephalopathy	
30	Patients sCD 163 levels as regard upper	91
	GI bleeding	
31	Patients sCD 163 levels as regard Child	92
	class	
32	Correlation between PVD and sCD 163	94
33	ROC curve analysis of Scd 163 in portal	95
	hypertension diagnosis	

Introduction

Portal hypertension (PHT) is a serious consequence of cirrhosis that may result in life-threatening complications with increased morbidity and mortality (Bosch and Garcia-Pagan, 2000). In cirrhotic livers, increased resistance to portal blood flow is the primary factor in the pathophysiology of portal hypertension (PHT) and is caused by structural abnormalities in the hepatic vascular architecture and an increased hepatic vascular tone (Gracia-Sancho et al., 2008).

Activation of Kupffer cells may be involved in the pathogenesis of portal hypertension by release of vasoconstrictive substances and fibrosis due to coactivation of hepatic stellate cells (**Grønbaek H et al.**, 2012).

Introduction and Aim of the Work

The current gold standard for measuring PHT and its severity is measurement of the hepatic venous pressure gradient (HVPG). HVPG is also emerging as a reliable endpoint to assess disease progression and therapeutic response in chronic liver disease. (Groszmann et al., 2005).

Introduction and Aim of the Work

Aim of the Work

To study soluble plasma SCD163, a specific marker of kupffer cells activation, as a biomarker for portal hypertension in patients with liver cirrhosis.

Portal Hypertension

Introduction

The term 'portal venous system' is applied to a system that begins and terminates in capillaries. In the abdomen, this system springs up as the capillaries of the intestine, and ends in the hepatic sinusoids. A schematic representation of the main splanchnic venous channels is shown in Fig. 1.

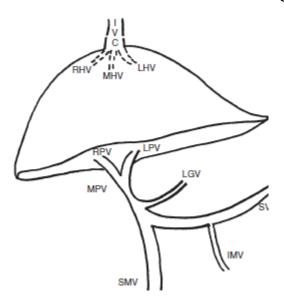


Fig. (1) Schematic representation of the portal and hepatic venous system. SMV, superior mesenteric vein; IMV, inferior mesenteric vein; SV, splenic vein; MPV, RPV, LPV, main, right and left portal vein; LGV, left gastric vein; IVC, inferior vena cava; RHV, MHV, LHC, right, middle and left hepatic vein (Kapoor and Sarin, 2002).

Portal pressure (P) like pressure in any vascular bed is determined by the product of portal venous inflow (Q) and the vascular resistance (R) to this flow, that is $P = Q \times R$ (*Groszmann et al.*, 2005).