

Radiation Synthesis of Polyaniline Based Compounds and their Potential Applications

Thesis
Submitted to

Faculty of Science Ain Shams University Cairo

For The Degree of Doctor of Philosophy in Chemistry

Submitted by

NOHA MOHAMED DEGHIEDY

(M.Sc. 2010) (B.Sc 2004)

National Center for Radiation Research and Technology, Atomic Energy Authority 2014

"Radiation Synthesis of Polyaniline Based Compounds and their Potential Applications"

Submitted by

Noha Mohamed Deghiedy

Thesis Supervisors:

Prof. Dr. El-Sayed Ahmed Soliman

Prof. of Organic Chemistry, Faculty of Science, Ain Shams University.

Prof. Dr. El-Sayed Ahmed Hegazy

Prof. of Radiation Chemistry National Center for Radiation Research and Technology.

Prof. Dr. Sahar Ahmed Ismail

Prof. of Radiation Chemistry, National Center for Radiation Research and Technology.

Head of Chemistry Department

Approval Sheet

Name: Noha Mohamed Deghiedy

"Radiation Synthesis of Polyaniline Based Compounds and their Potential Applications"

Degree: Ph.D Degree, Faculty of Science, Ain Shams University

2014

Supervision Committee

Prof. Dr. El-Sayed Mahmoud El-Sayed Soliman

Prof. of Organic Chemistry, Faculty of Science

Ain Shams University.

Prof. Dr. El-Sayed Ahmed Hegazy

Prof. of Radiation Chemistry

National Center for Radiation Research and Technology.

Prof. Dr. Sahar Ahmed Ismail

Prof. of Radiation Chemistry,

National Center for Radiation Research and Technology.

Examiner Committee

Head of Chemistry Department

Faculty of Science, Ain Shams University

Student Name: Noha Mohamed Deghiedy

Scientific Degree: Ph.D. Degree

Department : Chemistry Department

Name of Faculty: Faculty of Science

University : Ain Shams University

In the name of Allah, most gracious, most merciful.

All praise and glory to Allah the almighty who alone made this small objective to be accomplished. I feel honored to glorify his name in the sincerest way through this small accomplishment and ask him to accept my efforts. Peace be upon the prophet, his companions and all who followed him until the day of judgment.

ACKNOWLEDGMENT

To express all that I want to say, of people who have made it possible for me to come up to this stage is a rather onerous task which I shall have to try and make the best of.

I know and feel in the deepest parts of my heart that I would have never completed this long and adventurous journey without some special people. Here, I would like to record my thanks to these people whose help have brought me to the end of this invaluable journey.

I would like to express my deep gratitude and respects to my supervisor *Prof. Dr. Elsayed Ahmed Soliman* for his keen interest and valuable guidance, strong motivation and constant encouragement during the course of this study.

I would like to express my most sincere appreciation and gratitude to my supervisor *Prof. Dr. Elsayed Ahmed Hegazy* for his guidance, and continuous encouragement. It has been my lifetime opportunity to pursue my career under her leadership and vision.

My sincere appreciation goes to my *Prof. Dr. Sahar Ahmed Ismail* her guidance, advices and the freedom he allowed me to work independently throughout this study.

I am grateful to *Prof. Dr. Hassan Ahmed Abd El-Rehim* for his contribution and support devoted to this work He has never

stopped believing in me and were able to motivate me to keep trying.

Many thanks to the members of *Dipartimento di Ingegneria*Chimica dei Processi e dei Materiali, Universita` di Palermo,

Palermo, Italy for their personal advices, help in the laboratory and friendly attitude.

I also want to extend my gratitude to all colleagues and staff members of Radiation Researches of Polymer Chemistry Department (NCRRT), and the groups of irradiation facilities at (NCRRT) for their helps and facilities provided throughout this work.

I would like also to place on record my great appreciation to all my colleagues who helped me throughout this work.

Last but not least to my family for their understandings during the course of this study. Their praying has helped me to get the strength to finalize this study.

Noha Deghiedy

DEDICATION

To

Soul of my father,

My mother,

Brothers and sister

Thanks for being a part of my life

Contents

ABSTRACT

LIST OF FIGURES

LIST OF TABLES

LIST OF SCHEMES

CHAPTER I

INTRODUCTION & LITERATURE

REVIEW

1.1.	.1. Inherently Conducting Polymers (ICP)			
1.2.	Mechanism of Conductivity of Conducting			
I	Polymers	8		
1.3.	Doping of Polymers	12		
1.4.	Applications of Conducting Polymers	15		
	Group I	15		
	- Electrostatic materials	15		
	- Conducting adhesives	17		
	- Electromagnetic shielding	19		
	- Printed circuit boards	22		
	- Artificial nerves	23		

- Aircraft structures	24
□ Group II	25
- Rechargeable batteries	25
- Sensors	28
- Electrochromic devices	33
- Electromechanical Actuators	36
- Drug release systems	39
- Catalysis	43
1.5. Polyaniline (PANI)	45
1.5.1. Structure of Polyaniline (PANI)	47
1.5.2. Doping in Polyaniline: Acid Doping	49
1.5.3. Synthesis of Polyaniline	51
1.5.3.1. Chemical Synthesis	52
1.5.3.2. Electrochemical Synthesis	59
1.6. Conducting Polymer Nanocomposites	62
1.7. Applications of Polyaniline and Its Composites	68
1.7.1. Photocatalytic Degradation	74
1.7.1.1. Principle of Photocatalytic Oxidation Process	77
1.7.1.2. Photocatalytic Activity of PANI-TiO ₂ Nanocomposites	80

CHAPTER II

MATERIALS & EXPERIMENTAL

TECHNIQUES

2.1. Mate	rials	84				
2.2. App ai	ratus	86				
2.2.1.	Gamma Radiation Source	86				
2.2.2.	Fourier-Transform Infrared Spectroscopic					
	Analysis (FTIR)	86				
2.2.3.	UV-Spectroscopic Analysis	86				
2.2.4.	Scanning Electron Microscopy (SEM)	87				
2.2.5.	Thermal Gravimetric Analysis (TGA)	87				
2.2.6.	Dynamic Light Scattering (DLS)	87				
2.2.7.	X-Ray Diffraction (XRD)	88				
2.2.8.	DC-Conductivity Measurements (Four-Probe					
	Method)	88				
2.2.9.	Electrochemical Impedance Spectroscopy (EIS)	89				
2.2.10.	2.2.10. Cyclic Voltammetry Measurements					
2.2.11.	Photocatalytic Activity Measurements	91				
2.3. Meth	ods	94				
2.3.1.	In-situ Formation of Conductive Polyaniline					
	Thin Skins onto Radiation Grafted					

Polypropylene Films (PP-g-PAA)/PANI				
2.3.1.1. Preparation of radiation-grafted polyacrylic				
acid-polypropylene films (PP-g-PAA)	94			
2.3.1.2. Conversion of polyacrylic acid-				
polypropylene films into acyl chloride surface (PP-g-PAA)/Cl	95			
2.3.1.3. Conversion of (PP-g-PAA)/Cl films into				
aminogroups surface functionalized				
derivatives (PP-g-PAA)/amine	95			
2.3.1.4. In situ polymerization of polyaniline skins				
onto carboxyl and amino-functionalized PP-				
g-PAA films	97			
2.3.1.5. Electrochemical Synthesis of Polyaniline				
(PANI)	98			
2.3.2. Gamma Radiation Enhancement of				
Photocatalytic Activity of Conducting				
Polyaniline–TiO ₂ Nanocomposites (PANI-TiO ₂)				
for Degradation of Methyl Orange Dye (MO)				
under Visible Light	99			
2.3.2.1. Preparation of Nanosized TiO ₂ Sol – Gel	99			
2.3.2.2. Preparation of PANI-TiO ₂ Nano-				
composite	99			

CHAPTER III

RESULTS & DISSCUSION

3.1.	In-situ Formation of Conductive Polyaniline Thin Skins				
	onto	Radiation Grafted Polypropylene Films (PP-g-			
	PAA)/PANI	102		
	3.1.1.	Formation Mechanism of poly(propylene)-g-			
		poly(acrylicacid)/polyaniline functional hybrids			
		(PP-g-PAA/PANI) and their precursors	106		
	3.1.2.	Electronic absorption spectra of PP-g-PAA/PANI			
		functional hybrids	114		
	3.1.3.	Investigation of chemical modification of PP-g-			
		PAA/PANI functional hybrids by FTIR			
		spectroscopy	123		
	3.1.4.	Surface topography and transverse section			
		morphological analysis of skin-core functional			
		hybrids	132		
	3.1.5.	Cyclic volltammatry measurements	138		
	3.1.6.	Impedance spectroscopy of skin-core functional			
		hybrids	141		
	3.1.7.	Electropolymerization of PANI onto PP-g-			
		PAA/PANI functionalized films	1.51		
			151		

3.2.	Gamma	Radiation	Enhancement	of	Photocatalytic	
	Activity	of	Conducting	Po	olyaniline–TiO ₂	
	Nanocomposites (PANI-TiO ₂) for Degradation of Methyl					
	Orange I	Oye (MO) u	nder Visible Ligh	ıt	•••••	158
	3.2.1. Sol-	gel Synthesi	is of TiO ₂	••••	•••••	159
	3.2.2. Four	rier-Transfe	orm Infrared (F	ΓIR)	Studies	165
	3.2.3. Ultr	aviolet–Visi	ible (UV-vis) Abs	orpt	ion Studies	168
	3.2.4. Then	rmogravimo	etric Analysis (T	GA)	Studies	175
	3.2.5. X-Ray Diffraction (XRD) Studies				179	
	3.2.6. Form	mation	Mechanism	of	PANI-TiO ₂	
	Nanocom	posite	•••••	• • • • •	•••••	183
	3.2.7. Phot	tocatalytic	Activity	of	PANI/TiO ₂	
	Nanocom	posites	•••••	•••••	•••••	185
DET	EDENICEC	İ				

REFERENCES

SUMMARY

ARABIC SUMMARY

ABSTRACT

Polymers are widely used in all walks of human life and play a vital role in shaping modern man's activities to be as important and comfortable as they are today. The advances in science and technology made in recent decades owe much to development of polymer science. The synthesis and design of new polymeric materials to achieve specific physical properties and specialized applications, and attempt to find interesting applications involving advanced structures and architectures, are in continuous development in the period of the polymer science.

Electrically conducting polymers such as polyacetylene, polypyrrole, polythiophene and polyaniline have been the subject of intensive research due to their useful electronic properties and for their application. The factor that has motivated much of the work on the synthesis of conducting polymers is the need to find newer materials having a wide range of physical properties such as flexibility and processibility, and conductivity close to that of metals to suit many technological applications.

In the present work, an attempt has been made to review the most interesting and fascinating aspects of conducting