RING THEORY,

CONTINUOUS AND QUASI INJECTIVE MODULES

ATHESIS

Submitled in Partial Fulfilment of the Requirements for the

MASTER OF SCIENCE DEGREE

BY THANAA KHALID EL-BOUHY

Women's University College
Ain Shams University
Heliopolice Cario

A.R E 1975 7278

ACKNOWLEDGMENT

The auther is deeply grateful to Professor M.G.S. El MOHANDIS for his valuable encouragement throughout the supervision of this work.

The author is extremely indebted to Doctor SAAD H. MOHAMED, for suggesting the problem involved in this work, stimulating advice and encouragement.

CONTENTS

		Page
Summary		i
Chapter One:	Injective Modules	1
Chapter Two:	Quasi-Injective Modules	31
Chapter Three:	Continuous Modules	53
Refrences		73
Arabic Summary		

results we prove that:

The third chapter is devoted to the sindy of continuous modules. Several results on injective continuous modules. It is shown by an example that a continuous modules. It is shown by an example that a continuous module need not be quest-injective. Among other

some fundamental results of injective and quasi-injective modules. Some of these results are needed in the last the last and some others are to

In the first two chapters we state and prove Tluenced by the first two chapters we state and prove

direct summand of M, then A is a direct summand.

The work in this thesis has been mainly in-

- direct summand of M, and a some teamorphic to a cit) if a submodule A of M is isomorphic to a
- conditions:

Quesi-injective modules were introduced by Johnson and Wong (10) as a generalisation of the concept of injective modules. In this work we study a generalisation of quesi-injective modules. We call a module M continuous if it satisfies the two

anumery

CHAPTER I

INJECTIVE MODULES

In this chapter we collect some fundamental properties of injective modules. The notions of free modules and projective modules are also discussed. As we were interested to point out only those results which will be used in the subsequent sections, we have ignored so many interested results on injective modules, some other results are stated without proof. The mein results in this chaples are taken from [1], [2], [4], [5], [9], [11], [17].

1. PRELIMINARIES

All rings considered in this thesis have unity and all modules are untital right modules. If R is a ring, the notion mod-R will denote the set of all (right) R-modules. Let M @ mod-R and {Ai: iel} be a set of all submodules of M. Then

$$\begin{cases} \sum_{i \in I} a_i : a_i \in A_i, a_i = 0 \text{ for all but a} \\ \text{finite number of } i's \end{cases}$$

is the smallest submodule of M containing A_i for all i, this submodule is called the sum of $\{A_i:1\in I\}$ and is denoted by $\sum_{i\in I}A_i$. The family $\{A_i:i\in I\}$

is called independent in case

Aj
$$\bigcap_{j+i\in J} A_j = 0$$

for all $j \in I$. In this case we call $\sum_{i \in I} A_i$ a direct sum and denote it by $\bigcap_{i \in I} A_i$.

Let $G = \{x_j : j \in J\}$ be a subset of M. Then $N = \sum_{i \in J} X_j R$, is called the submodule generated by G. G is said to be a set of generators for M in case M = N. Every module M has at least one set of generators, namely M. ($M = \sum_{i \in M} x R$). Let G be a set of generators of M. G is called a basis for M in case $\{x_j R : j \in J\}$ is independent. This is equivalent to saying that G is a set of generators and

$$\sum_{i \in I} x_i r_i = 0 \iff \text{every } r_i = 0.$$

A module M is said to be finitely generated if M has a finite set of generators.

An element M (mod-R is called artinian (noetherian) if every non-empty set of submodules of M has a minimal (maximal) element. This is the same as saying that every descending (ascending) sequence of submodules becomes ultimately stationary. It is known that a module is noetherian if and only if every submodule is finitely generated. If the module

R_R is artinian, then it is noetherian. However, the converse is not true. (Consider the ring of integers).

Let M, N \in mod-R, and let f: M \longrightarrow N be a mapping. f is called a homomorphism if for all x, y \in M and all $r \in R$:

$$f(x + y) = f(x) + f(y)$$

 $f(x r) = f(x) r$

Let \mathbf{M}^{t} and \mathbf{N}^{t} be subsets of \mathbf{M} and \mathbf{N} respectively. We define

$$f(M') = \{ f(x) : x \in M' \}$$

 $f'(N') = \{ y \in M : f(y) \in N' \}$

f (M') and f' (N') are submodules of N and M respectively. f (M) is called the <u>image</u> of f and is denoted by Im f; f' (o) is called the <u>kernel</u> of f and is denoted by Ker f. f is called a <u>monomorphism</u> if ker f = o, an <u>epimorphism</u> if Im f = N. f is called isomorphism if it is a monomorphism and epimorphism; in this case we say that M is <u>isomorphic</u> to N and write M≈N. If € is a homomorphism of M into N; then

Im 0 ≈ M/ker 0.

Let A, B, C \in mod-R. Let $f: A \longrightarrow B$ and $g: B \longrightarrow C$ be homomorphisms. We define

gf : A - C by

$$gf(a) = g(f(a))$$

for every a & A. Clearly gf is a homomorphism. We note the following properties:

f and g are mono:

g f is mono.

f and g are epi.

g f is epi.

g f is mono.

g f is epi.

g f is epi.

Let { Ai : if I } be a family of R-modules and let A denote their cartesian product. We may write any element of a (A in the form

$$a = [..., a_i, ...]$$
 (or simply = $[a_i]$),

Define operations on A componentwise, that is

$$a + b = [a_i + b_i]$$
 and $a r = [a_i r]$

Then A becomes an R-module. We call A the <u>direct</u> product of $\{A_i: i \in I\}$ and denote it by $\prod_{i \in I} A_i$.

Define

$$p_j: \Lambda \longrightarrow A_j$$
 by $p_j(a) = a_j;$
 $q_j: A_j \longrightarrow \Lambda$ by $q_j(x) = [a_i]$ where $a_i = \begin{cases} o & i \neq j \\ x & i = j \end{cases}$

Pj is called the natural projection of A onto Aj

and q_j is called the <u>natural injection</u> of A_j into A_j . Then

$$\begin{array}{ccc}
\rho_{k} & q_{j} &= \begin{cases} 0 & k \neq j \\
 & k = j \end{cases}$$

Let B be the subset of A consisting of all elements $a = [a_i]$ where $a_i \neq 0$ for only a finite subset of I. Then B is a submodule of A which is called the coproduct (or direct sum) of $\{A_i : i \in I\}$ and is denoted by $\{A_i : i \in I\}$ and is for almost all $i \in I$. Thus $\sum q_i(b_i)$ makes sense because $\sum runs$ only over a finite number of terms.

Now

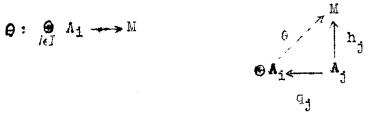
$$\Sigma q_j p_j(b) = \Sigma q_j(p_j(b)) = \Sigma q_j(b_j) = b$$

Hence

Let M ϵ mod-R. Let $f_i: M \longrightarrow A_i$ be a family of homomorphisms. Then there exists a unique homomorphism

$$\phi: M \longrightarrow \prod_{i \in I} A_i$$
such that $p_j \phi = f_j$ for all $j \in I$
 $A_i \longrightarrow A_j$

If $h_1: A_1 \longrightarrow M$ is a family of homomorphisms, then there exists a unique homomorphism



such that $\theta q_j = h_j$ for all $j \in I$

The above discussion shows that the notions of direct product and direct sum are dual to each other: If the index set I is finite, the two notions coincide.

An ordered set is a system (S, <) where S is a set and < is a binary relation which is reflexive, anti-symmetric and transitive. Let A = S, an element x ∈ S is called an upper bound of A if a < x for every a ∈ A; in this case we say that A is bounded above.

A subset C of S is called a chain in S if for every a, b ∈ C either a ≤ b or b ≤ a. If every chain in S is bounded from above, we say that (S, ≤) is an inductive set. An element m ∈ S is called maximal if m ≠ s for every s ∈ S. We will always have the occasion to use the funiamental axiom k newn as Zorn's Lemma which states that every influctive set has at least one maximal element.

2. EXACT SEQUENCES.

2.1. <u>DEFINITIONS</u> Let $\{M_i : i \in I\}$ be a countable set of modules with corresponding collection of mappings $f_i : M_i \longrightarrow M_{i+1}$. Then the sequence

$$\cdots \longrightarrow M_{i-1} \xrightarrow{f_i} M_i \xrightarrow{f_i} M_{i+1} \longrightarrow \cdots$$

is called exact provided that Im $f_{i-1} = \ker f_i$ for every if I. An exact sequence of the form

$$0 \longrightarrow A \xrightarrow{f} B \xrightarrow{g} C \longrightarrow 0$$

is called a short exact sequence

Using the notion of exact sequences, equivalent definitions of epimorphisms, monomorphisms and isomorphisms may be given as follows: A homomorphism f: M -> N is an epimorphism, monomorphism or isomorphism according as:

$$M \xrightarrow{f} N \to 0, 0 \longrightarrow M \xrightarrow{f} N \text{ or } 0 \longrightarrow M \xrightarrow{f} N \longrightarrow 0$$

is exact, respectively.

An exact sequence M \xrightarrow{f} N \longrightarrow 0

(o \longrightarrow M \xrightarrow{f} N) is said to split if there is a homomorphism g: N \longrightarrow M such that f g = l_N (g f = l_M), the homomorphism g is called the splitting homomorphism. An exact sequence that splits is called split exact.

2.2. PROPOSITION. Let M \xrightarrow{j} N \longrightarrow o be split exact with splitting homomorphism k. Then

 $M = I m k \oplus ker j \approx N \oplus ker j \approx I m j \oplus ker j.$

Proof. Note that \mbox{Im} $\mbox{\sc k}$ and $\mbox{\sc ker}$ j are submodules of $\mbox{\sc M}$ and

 $I m k \cap ker j = 0$.

Let m be any element in M, then

j(m-kj(m)) = j(m) - (jk)j(m) = j(m) - j(m) = 0

Thus $m - k j (m) \in \text{ker } j$, whence $m \in \text{Im } k \oplus \text{ker } j$.
Therefore

M = Im k 🖨 Ker j.

Since j is an epimorphism and k is a monomorphism,

Im $k \approx N = \text{Im } J$.

This completes the proof.

similar to the proof of the above Proposition, one can easily prove the following:

2.3. PROPOSITION. Let $0 \longrightarrow N \xrightarrow{j} M$ be a split exact sequence with splitting homomorphism k. Then

M = Im j ⊕ Ker k ≈ N ⊕ Ker k ≈ Im k ⊕ Ker k.

Next we prove:

2.4. THEOREM. If a short exact sequence

$$0 \longrightarrow A \xrightarrow{f} B \xrightarrow{g} C \longrightarrow 0$$

splits at one end, then it splits at the other end and B pprox A $oldsymbol{\Theta}$ C

proof. Suppose that B \xrightarrow{g} 0 \xrightarrow{g} o splits with splitting homomorphism g'. By proposition 2.2.

Since $0 \longrightarrow A \xrightarrow{f} B \xrightarrow{g} C \longrightarrow 0$, we exact

Ker g = Im f. So that

$$B = Im \not\in \oplus Im f$$

As f and g are monomorphisms

B ≈ A ⊕ C

Let h be the projection of B onto Im f. Define $f': B \longrightarrow A$ by f'(b) = f'(h(b)). Then f' f = 1. This completes the proof.

3. PROJECTIVE MODULES.

We start by defining and discussing a more restricted class of modules.

3.1. DEFINITION. A module M is called <u>free</u>
if M has a basis (we may consider the empty set as a
basis for the zero module).

It follows immediately by the definition that any ring R is free. (In fact {1} is a basis for the ring R). The following theorem generalizes this observation.

3.2. THEOREM. An element M in mod-R is free if and only if M is isomorphic to a direct sum of copies of R.

proof. Let $\{m_i: i \in I\}$ be a basis of M. For each $i \in I$, $m_i R \approx R$. Now

$$M = \sum_{i \in I} m_i R = \bigoplus_{i \in I} m_i R,$$

whence the 'only if' part follows. Conversely, suppose that M \approx $\bigoplus_{i\in I}$ R_i , where each $R_i\approx R$ as a right R-modules. Let f be the given isomorphism of $\bigoplus_{i\in I} R_i$ onto M and g_i the isomorphism of R onto R_i . Let

$$m_{1} = f g_{1} (1)$$
.

Then it is clear that $\{m_i: i \in I\}$ is a basis of M.