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IV EGTIVE MODULES

In thig chapicr vwe collect caoie fund@enizntsl pro-
paerties o7 injective modules, The notionsof free mo-
Aules end projective modules are zlso discussed, As
we were interested to point out only those resulis
which will T e uged in the subsecuent sections, we
have ignored go many interested results on injective
modules, soue other results sre stated without proof,
The iein ressulis in this ﬁhﬂ(ﬂﬂ#' are token Irom

£13, (=21.04,083,00], ) a7}

L. DPRELIMINARIES

All rings considered in this thesis hove uanity
snd 21l modulezs sre untitsl right modules, If R is
g ring, the notion mod-R will dsnoie the get of all
(right) R-iodules, Let M« modsR =na {Ai cIeT } be
2 got of ¥l submodules of M. Then

St %ai t 94 €Aj; 24 = © for all but e

finite number of 1'9}

is the susllest submodule of I conizining Ay for nll
i, this submodule is e¢zlled the sum of {Ai s 1¢ I?

end iz denoted by £ Az, The fenily [A; : 1€14
(234
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is ealled independent in cese

AN 2 A =0

Jkie]
for sl1 3 € I. 1In this csse we call 2Z_ Ay @ direct
tel
gum snd denote it by ;@ Aie

Let G = {Xj : J€J}be a subset of i Then
W = % Xj R, is cslled the submodule generated by
G G iz seid to be o set of generators for M ir
crse M = No.  Every module M heg 2t least one zet of
senerators, namely Me { M= ii(lﬁx R)s Let G be =
cet of generators of M G is colled 2 1_0_;3_9,}3 for M
in cerge i xj}t t3e J} is independent, This iz equi-

velent to saying that G is a sct of generators and

M

. X4 I‘i = Q &= avary ri = Q.

g1

A module d is =2id fo be finltely seneratel 1if M

has a finite set of generstors.

An eleament Me¢ mod-R 1s called artinian

gruitiiall

{ noetherisn) i every non- empty set of submodules of
M bes 9 uminimal (maximal) eleneit, Thia ig the =oms
ng saying thot every descending ‘escending) seouence
of =ubmodnles becomes ultims tely stetionsry., It is
wnoym that 2 module is noeth erien if and oniy 1if

every submodule ig finitely genersted, I fhe module
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Rp ie srtinisn, then it is noetherisn, Howvever,
the converse is not true, {Consider the vring of
integers).

T,et M, N¢ mod~-R, ond let £+ M—->N be a maypling.

£ is ealled s homomorphism 1 for 21l x, y& M 2and ell

re

-

Fl(xa+y) = (x)+ Ly

fixr)="Ff(x)r

Lst M' and N' be subsgets of M #nd N respectively.

we define
(M) = §F (%) xEHT
- , ,
Yy = fyen: £ (y)en}
i) end al (1) are sebmodvies of N a7 M reap ert-

ively. £ (M) is colled the 1lmage of £ and ie donoted
by Tm 3 £ (o) is called the kernel of * and is

denotel by Xer f, £ 1= called 2 monomorphism 11

Xer £ = 0, en gpimorphiza if Tm f =N T iscalled
i1somorphism *f it dis 8 sononorshion and epimorphlamg
in this case wg say that I is isomorphic %o N end write

M®N, If6ils a nomomorphism of M into Ny then
Im & = ¥/kerg .

Let A, B, CE€ mod«R. Let £+ A—» B #nd

g+ B —>»0C be homomorohismns, We define
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gf 1 A—»C Dby
gfia) =g (fla))

for every a€ A. (learly gf- is o homnomorphisn, We

note the following properties:

£ znd g 8re MON0E —==3 £ [ 15 monos,
f and g are epl., === g T is epl,
g £ is mono, ————=2» [ 1s mono
g £ is epi. 2 2 1g epl,

Let i Ay ¢ i¢ I} be & fenily of R-modules and
Let A denote their ceriesisn product, We inay write

any elament of a¢ 4 in the form
a '—“[--l; aig lqo] (OI‘ Simplf = rai] )“
Tellng operations on A componentwise, that is

a+b={8a +by] endars= [as *] .

Then A hecomes an R-niodule. We coll A the direct

product of {Ai : i€ I} and dencte it by T A

€] 1
Define
Pj ¢ AA—-—-?A:} by P3 (2) = aj;
- o 1#]
Qg * Ay——> A by aj (x) = {ai] vhere ay -.—.E
x i=]

2y is eslled the netural projectiion of A onto A5
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and a4 is ealled the natural injecilon of A;} into

A. Then

P Clj = %O k %’ J
Let B be the subset of 4 consisting of oll elements
8 = [ai‘) whore ai+0 for only 8 Tinite subset of I,
Then B is s submodule of 4 which ies ealled the
coproduct for direct sum) of i‘ai : 1¢T} and is
aenoted by HMg. IfbE B, then gy [b;) = [ 0]
for almost 811 § € I. Thus qu (bj) mekes sence

beesuse & Yuns only over » Tinite number of terns,
Now
Z g, 9y (b) = 72gy (py (D)) =2 g3 (by) =0
Henece
Z. Gy Py = lp.

Lot M ¢ mod-Re Let fy : M-—> A4 be 2 Pamily

o7 honomorphlsms. Then therc exicis e unigue hono-
morpnian

, T M

TR

4
: Py
sueh that py $ = fy for all J ¢ I A 3

)
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If hy @ A —> M ig o femily of homomorphiams, then

there exists a unique homomorphism
Q- ig'ﬁi'***nz 6 T h,
A g 3
955_4&-—-— ‘Aj
9
such that 84gy = hj for all je¢ I
The sbove discussion shows that the notlons of
tdirect product’ and Ydirect sum® sre dusl to esch
other: If the index set I is finite, the two notiong
coincide.

An ordered set is a system (8, <) vhers § is a

gset end«is ¢ binery reloiion which is reflaxive,
anti-oyaetric snd treansitive, Lel A= 8, on element

we¢qg ie called en upper bhound o7 A 17 sagx Tor every

s¢ As in this cese we Ay that A is bounded sbove,

A subset ¢ of § is called 7 chaln in g if for every

5, b€ 0 elther asb or bsa I every chain in 8

ie bounded from sbove. we sey thet (g, <€) 1= 21
j.nduct_%y_e_a_ cct, AD element me S is called maximsl ir

I # e For every S € 8 We will aiweyg heve the
ocesgion o uge the funiamental axiom ¥ pewn a2 Zorn's
Lomma which states that every infuctive set has &%

lesat gpe maximal element.
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2. EXACT SEQUENCES.

2.1, DEFINITIONG ILet {M; : 1¢I} be a count-

able set of wodules with corresponding collection of

mappinys fi : My ——> Mj+1, Then the secuence

f high
ve — M3 7 -.~!;L.7»,,, My —=h Mis1

iz emiled exact provided that Im 3 1 = ker fi for

every 1€¢ I, An exact sequence of the fom

>
-

0 >4 =Ly BnC - 0

is enliled o short exset sequence

Using the notion of exa@ct ssquences, ecuivalent
definitions of epimorphisias, monouworphiamg and
isomorphisme mey be given ss Tollows: A hamomorphism
£ . M—>XN iz o0 epimorphism, monomorphism or iso-

morphism according =g

roit

|
)
S}
2]

r

O

M *:ie» N0, 0 —>M -——--g-wa-N or o 5 M

ig aexect, respectively.

AD exscl sequence M -———f——-‘r N-—>0
(0 —— N W-fw,- N) ig said to §_g_}_}_§ if there is »
homomorphiss: g «+ N > M stuch that T g = 1y

(g T = 1), the homomorphism g 13 ealled the =plit-

ting homomorphiasn An exset seguence that wlilts

is called apliti exact.
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o, 2. PROPOSITION. Let ¥ —d- N wso he

split exect with splitting howomorphism k, Than
H=Inkg@ker jsN@ker j=Ii ] Bker Je

Proof, Note that Im %k ond ker j are submodules
of i end

ITmkfiker J = 0.
Let m be eny eleunent in M, then
j(ma-kJ(m) =3 (a)-(3x)d{m)=31m -1 {u)=o

Thues m -~ k § (m) € Xker J, vhence m € Im k ® ker J.

heraefore
M= Iz k@ Ker J.

gince 3 is an epimorphism znd k ig o monomerphism ,
T ok 2 N = In J,

Thias coapletes the nroof,

gizilar to the proof of the above Proporiiion,
ane can easily prove the following:

5.3, PROPOSITION. Lot O-——» N —4-> M be »

split exsct gequence with splitting homomorphism ke

Then
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M=Im jJ@®Ker k=N @Xer k = In ¥ @Ker ke

Next we prove:

2, 4 THEOREM. 1f 2 short exset sequencs

C yA L8 ~BE50c—>0

anlits st one end, then it splits at the other end
snd Bz AR G
proof., Suppose thet B s Q-0 snllts

with =plitting homomorphism ¢, By proposition 2,%.

B = Im g & Ker g

gince O —> A £ > B B o O 0, A7 &/1,,(7

Ker g = Im f. 90 that

BeIng@iInf
As © and g ere monoaiorphisms
P AR G

1,et 1 be the projection of B onto Im f. Define
Py By p by (b) = l fn (b))e Then

D 1 This completes the proof,

Central Library - Ain Shams University



- 10 =

3. PROJECTIVE MODULES.

We start by defining snd dlscussing 5 MOYe Iros-
trieted closs of modules.

7,1, DEFINITION. A module M is called fres
if M hae s besls (we may consider the epty set as =z
basls for the zero module).

1% follows imnedistely by the definition that
any ring R is free. (In fact {1} 1s a basls for
the ring R)s The followin; theorem generslizes this
observotion.

3 20 TUFOREM. An elament M in mod~-R is free ir
snd only if M is lsomorpiiic to 2 Alrect sum of coples
of Re

proof, Let {myr 1 ¢ I} be a bosic of M

Por epch 1 € I, M4 R~ Ra Now

M:‘:! miR:: mR,
£ & ™

whence the tonly 1f* part follows. Conversely, sup-
pose that M = g;l Ry, vhere gauch Ry = R 28 3 right
Rmodules, Let £ be the given isoworphisu of

B onto M =nd g4 the isomorphism of R onto Ry.

L4
Let

Then it ie clesr that §mg : 1€ I} is 2 basis of ik
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