STUDIES ON SOME ELASMOBRANCHS OF THE MEDITERRANEAN

M. Sc. THESIS

Presented to the Department of Zoology
University College for Women
Ain Shams University

By

CHADIA MOHAMED KADRY

Demonstrator in Zoololy, University College For Women. Ain Shams University

1981

BOARD OF SCIENTIFIC SUPERVISION

- Professor Dr. Fatma M. Mazhar. Professor of Comparative Anatomy and Embryology, zoology Department, University College for Women, Ain Shams University.
- Professor Dr. Hussein K. Badawi Director of the National Marine Reference and Head of Department of Ichthyology, Institute of Oceanography and Fisheries, Alexandria.

ACKNOWLEDGENENT

I wish to express my deep thanks and gratitude to Professor Dr. Fatma M. Mazhar, Professor of Comparative Anatomy and Embryology, zoology Department, Ain Shams University college for Women, not only for her valuable supervision, great help and guidance, but also for her continuous encouragement, constructive criticism throughout this work. No words can be sufficient to express my gratitude and indebtedness.

I am also indebted and extremely grateful for the great help of Professor Dr. Hussein K. Badawi. Director of the National Marine Reference collection and Head of Department of Ichthyology, Institute of Oceanography and fisheries, Alexandria, for the facilities which he offered, his instructive supervision, continuous encouragement which were of great value in completing this thesis.

CONTENTS

		Page
I-	INTRODUCTION	1
II-	MATERIAL AND METHODS.	3
	PART I	
III-	HISTORY OF CLASSIFICATION	5
	MEDITERRANEAN SEA	9
	ORDER SELACHII	12
	Suborder GALEOIDEA	12
	Family SCYLIORHINIDAE	13
	Scyliorhimus caniculus	16
	Scyliorhinus stellaris	19
	Suborder SQUALOIDEA	21
	Family OXYHOTIDAE	22
	Oxynotus centrina	24
	Suborder SQUATINOIDEA	2 7
	Family SQUATINIDAE	29
	Squatina squatina	32
	Squatina oculata	36
	ADDITO TO A HOYDE	20
	ORDER BATOIDET	39
	Suborder TORPEDINOIDEA	41
	Family TORPEDINIDAE	43
	Torpedo marmorata	45
	Torpedo fuscomaculata	48
	Torpedo alexandrinsis	57

	PART II	
		Page
<u>v-</u>	INTERNAL ANATOMY IN FIVE REPRESENTATIVE SPECIES	
	1. Digestive system	54
	Mouth and Bucco-pharyngeal cavity	5 5
	Oesophagus	5 8
	Stomach	59
	Intestine	60
	A- Duodenum	61
	b- Valvular intestine	64
	0- Colon and rectum	66
	Cloaca	66
	Glands of the digestive tract	•
	The liver	66
	The pancreas	66
	•	68
	2. Circulatory System	70
	B. Ventral aorta and afferent branchial	70
	arteries	
		77
	3. Urino-genital System	7 9
	Female uninary System	7 9
	Male urinary System	8 2
	Female Genital System	33
	4. Nervous System.	36
	Brain	90
	Cranial Nerves	92
VI-		
VII-		
	LIST OF ADBREVIATIONS AND MAP	.28
IX-	BIBLIOGRAPHY.	.30
	- ARABIC SULLARI	ઝ ઇ

Ι

INTRODUCTION

I- INTRODUCTION

The Oceans of the world cover approximately about 71% of the earth's surface. The seas are the cradle of life. They are so vast and complex and the assemblages of living organisms in them are so varied.

The Mediterranean consists of a deep gash in the crust of the earth, no less than 2.250 miles reckoned from Gibraltar to the syrian coast. The Mediterranean is related to the Atlantic through the great Gateway of the Western world. Another Gateway, that of Suez Canal makes a natural communication between the Mediterranean Sea and the Red Sea. So we can say that the Mediterranean derives some of its biota from the Atlantic and the Red Sea. Fishes have been able to pass from the Red Sea to the Mediterranean Sea, where they established themselves and flourished to the point of becoming economically important than in the reverse direction.

Thorough and systematic study of the elasmobranchs of the North-Western Red Sea have been carried out by Gohar & Mazhar (1964).

Until now little work has been conducted on the elasmobranchs of the Egyptian Mediterranean shores. A series of studies on the elasmobranchs of the South-Eastern Mediterranean Egyptian shores have been carried out by Mazhar (1967 & - 74).

The present work is a continuation of Mazhar's investigations and it deals with the taxonomy as well as the anatomy of some elasmobranchs of the Egyptian South-Eastern Mediterranean shores. Eight species of elasmobranchs are described and keys for their identification are supplied. For the comparative anatomical study five main species belonging to the two orders Selachii and Batoidei are selected.

11

MATERIAL AND METHODS

II- MATERIAL AND METHODS

The Oceanographic Institute of Alexandria was the centre of collecting the material needed for this work. Specimens were caught by nets, bottom trawls or bottom set longlines.

The dimensions and the external features of all specimens were examined in the fresh condition. Parts of the skin and buccal lining were soaked in dilute sodium hydroxide (3%) for about 14 hours, then washed by water and mounted in glycerine for the description of the dermal and stomodæal denticles.

The stomach and intestine of every specimen were cut open to examine the valvular intestine. Also the valves of the comus arteriosus, the number of embryos, when present, were noted.

To study the brain, the skull was injected with 40 % formaldehyde solution. The viscera were injected with 10 % formalin, studied in situ and then preserved in 5 % formalin for further study. In fresh specimens

the ventral aorta was injected with warm coloured gelatin mass for the study of the heart with its vessels.

The five main species selected for the comparative anatomical study represent three families having different habits and habitats. Among these, Scyliorhinus stellaris (Linnaeus, 1758), Family Scyliorhinidae represents the Selachii.

The Batoidei are represented by three species

viz: Torpedo marmorata (Risso, 1810), Torpedo fuscomaculata

(Peters, 1855) and Torpedo alexandrinsis (Sp. nov.),

Family Torpedinidae.

Squatina squatina (Linneous, 1956) Family Squatinidae is an intermediate form and also represents the Selachii.

III

HISTORY OF CLASSIFICATION

III- HISTORY OF CLASSIFICATION

Reviewing the history of terminology of the cartilaginous fishes, and the characters used in their classification, one finds that linnaeus as early as 1735 used the name chondropterygn to the cartilaginous fishes. Dumeril (1806) divided the cartilaginous fishes according to the presence or absence of an opercular covering. Muller and Henle (1837) used the external characters entirely in dividing the elasmobranchs directly into families basing their distinction upon the position of the dorsal fins.

The terms pleurotremes and Hypotremes were given by Dumeril (1865) to distinguish between the lateral and ventral gill-openings.

Gunther (1870) divided the subclass Chondropterygii into two orders, Holocephalia and plagiostomata. Depending on the shape of the body, fins, and position of gill-slits, he divided the latter order into two suborders, Selachoidei and Batoidei.

Hasse (1879) divided the Elasmobranchii according to vertebral structure, into Diplospondyli, Cyclospondyli, Tectospondyli and Asterospondyli. He was followed by Gill (1883), who subdivided them owing to the attachment of the palatoquadrate to the skull.

The rostral cartilages and pectoral fin skeletons were used as the bases of Regans (1906) classification.

Goodrich (1909) based his classification on the pectoral fin skeleton as well as certain other external characters.

Garman (1913) used such external characters as teeth, naso-oral grooves, and valves, and position of gill openings for his classification.

White (1937) adopted Garman's terms to a great extent, and she based her classification on external as well as internal characters.

Bigelow and Schroeder (1948) divided the subclass Elasmobranchii into the two orders Selachii (Sharks) and Batoidei (Saw-fishes, Guitar-fishes, Skates and Rays) depending on the position of gill openings, attachment of pectorals to head and presence or absence of eyelid. These authors stated that "no sharp lines can be drawn between the sharks on the one hand and the skates and