

Ain Shams University Faculty of Engineering

Electronics and communication Engineering Department

Robust Adaptive Signal Processing to Improve the Digital Receiver Performance

A THESIS

Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in Electrical Engineering

By

Amira Ahmed Mohamed Mohamed

B.Sc in Electrical Engineering (Electronics and Communication Engineering) Ain Shams University – 2009

Supervised by:

Prof. Dr. Adel Ezzat El-Hennawy (God bless him)Ain shams University

Prof. Dr. Wagdy Refaat AnisAin shams University

Dr. Waleed Mohamed El-Nahal Modern Science and Arts University Cairo, 2016

Ain Shams University Faculty of Engineering Cairo – Egypt

Examiners Committee

Name: Amira Ahmed Mohamed Mohamed Sakr	
Thesis: Robust Adaptive Signal Processing to Imp	rove the Digital Receiver
Performance.	
Degree: Master of Science in Electrical Engineering Communication Engineering)	ng (Electronics and
Title, Name and Affiliation	Signature
1- Prof. Dr. Mohamed Abo elela	
Faculty of engineering, Future University	
2- Prof. Dr. Wagdy Refaat Anis	
Faculty of engineering, Ain Shams University	

3- Prof. Dr. Abdelhalim Abdelnaby Zekry

Faculty of engineering, Ain Shams University

Date: \

Statement

This dissertation is submitted to Ain Shams University for the degree

of Master of Science in Electrical Engineering (Electronics and

Communications Engineering).

The work included in this thesis was carried out by the author at the

Electronics and Communications Engineering Department, Faculty

of Engineering, Ain Shams University, Cairo, Egypt.

No part of this thesis was submitted for a degree or a qualification at

any other university or institution.

Name: Amira Ahmad Mohamed Mohamed Sakr

Signature:

Date:

Curriculum Vitae

Name of Researcher Amira Ahmad Mohamed Sakr.

Date of Birth 15/12/1985

Place of Birth Egypt

First University Degree B.Sc in Electrical Engineering

Name of University Ain Shams University

Date of Degree June 2009

Paper Published From This Thesis

Amira A. Mohamed, Waleed M. El-Nahal, Adel E. El-Hennawy, "Adaptive Variable Step Size Algorithm for Acoustic Noise Cancellation by Using Multiple Sub-Filters Approach", International Journal of Computer Application (IJCA) (0975-8887), Volume 107- No.8, December 2014.

Acknowledgment

I would like first to thank my supervisors **Prof. Dr. Adel El-Hennawy**, **Prof. Dr. Wagdy Refaat Anis, Prof. Dr. Abdel Halim Zekry** and **Dr. Waleed El-Nahal** for their valuable help, Support, and encouragement.

I would like also to thank them about all their advice and recommendations in my thesis.

I would be ungrateful if I fail to express my sincere gratitude and appreciation to **Dr. Waleed El-Nahal** for all what he has given to me from his noteworthy experience and knowledge. His patience with me has been unparalleled. He exerted great efforts in supervising my thesis in the very details.

Many thanks go to my colleagues and friends at MSA University for their support and help during my thesis.

Finally I would like to thank my parents and my husband. Their patience, care, love and encouragement are what guided me through my whole life.

Of course I say first and foremost "Thanks to ALLAH".

Abstract

Noise cancellation in a signal is an important core area of the digital signal processing. In this work, a novel algorithm for cancelling noise from the speech signal in real time environment is proposed. In many applications of noise cancellation, the characteristics of signal may change quite fast. This requires the usage of adaptive algorithms, which converge rapidly. One of the most popular adaptive noise cancellers that often used to recover signal corrupted by additive noise is Least Mean Square (LMS) algorithm and that is due to its simplicity in implementation. But it has limitation when the desired signal is strong, that the excess mean-square error is linearly increased while increasing the desired signal power.

This results in downgraded performance when the desired signal exhibits large power fluctuations. In the proposed algorithm we use the benefits of both variable step size (VSS) LMS algorithm and Normalized Differential LMS (NDLMS) algorithm to handle this situation. One more addition of this algorithm is that it uses the concept of decomposing the long adaptive filter into low order multiple sub-filters to relieve the effect of slow convergence of that long adaptive filter. Finally, the proposed (P-VSSNDLMS) algorithm yields faster convergence with minimum mean square error in simulations which performed using real speech signal with different noise power levels.

Keywords

Adaptive Noise canceller (ANC), mean square error (MSE), VSSNDLMS, multiple sub-filters

Contents

Paper P	ublish	ed From This Thesis	ii
Acknow	ledgn	nent	. iii
Abstract	t		.iv
List of F	Figure	sv	/iii
List of T	Γables		х
List of S	Symbo	ols	хi
List of A	Abbrev	viations	ciii
Chapter	1		. 1
Introduc	ction		. 1
1.1	Mot	tivation	. 1
1.2	Ada	ptive Filters	. 1
1.3	The	esis contribution	. 3
1.4	Pre	vious work	. 3
1.5	Out	lline of the thesis	. 4
Chapter	2		. 5
Adaptiv	e Filte	ег	. 5
2.1	The	Task of an Adaptive Filter	. 5
2.2	Filt	er Structures	. 7
2.3	Per	formance Measures in Adaptive Systems	10
2.3	.1	Minimum Mean Square Error	10
2.3	.2	Rate of Convergence	11
2.3	.3	Computational requirements	11
2.3	.4	Length of Filter	11
2.3	.5	Robustness	12
2.3	.6	Stability	12
2.4	App	olications of Adaptive Filters	12
2.4	.1	System Identification	13
2.4	.2	Inverse modeling	14

2	.4.3	Linear Prediction	16
2	.4.4	Interference (Noise) Cancellation	17
2.5	Liı	near and Nonlinear Adaptive Filters	18
Chapte	er 3		21
Adapti	ive Alg	gorithms	21
3.1	Th	e Wiener Filter	21
3.2	Th	e Method of Steepest Descent	24
3.3	Le	ast-Mean-Square (LMS) Algorithm	25
3.4	Re	cursive-Least-Squares (RLS) Algorithm	27
3.5	Th	e Normalized LMS (NLMS) Algorithm	29
3.6	Th	e Normalized difference LMS (NDLMS) Algorithm	31
3.7	Pa	rameters affect performance of adaptive filters	32
3	.7.1	Choice of Filter Length	32
3	.7.2	Choice of Step Size	33
3.8	Va	riable Step Size Normalized LMS (VSSNLMS) Algorithm	33
3.9	V a 35	riable Step Size Normalized Difference LMS (VSSNDLMS)	Algorithm
Chapte	er 4		37
Systen	n mode	el	37
4.1	Int	roduction	37
4.2	Tr	ansmitted Signal	38
4.3	Ch	annel Model	38
4	.3.1	Stationary Channel (Case 1)	39
4	.3.2	Stationary Severe Channel (Case 2)	39
4	.3.3	Wireless Rayleigh Fading Channel (Case 3)	40
4.4	Ad	laptive Filter	42
Chapte	er 5		43
Propos	sed Ala	gorithm and Simulation Results	43
5.1	Pr	oposed Algorithm	43

5.2.1	Simulations using VSSNDLMS and P-VSSNDLMS algorithms	46
5.2.2	Testing proposed algorithm in different channels	49
Conclusions &	Future Work	59
References		61

List of Figures

Figure 1.1: systematic diagram of an Adaptive Filter	2
Figure 2.1: Filter Concept	5
Figure 3.1: Block diagram for Wiener filter	2
Figure 3.2: Example cross section of an error-performance surface for a two tap	
filter	4
Figure 3.3: Adaptive Filter with normalized difference LMS algorithm 3	1
Figure 4.1: The overall system model	7
Figure 4.2: The transmitted signal s(n)3	8
Figure 4.3: Stationary severe channel (Case 2). (a) Case 2a. (b) Case 2b 4	0
Figure 5.1: Parallel VSSNDLMS Block Diagram	4
Figure 5.2: Speech signal d (n); (b) noisy speech signal x (n)	6
Figure 5.3: Original signal s(n); desired response d(n); Error signal e(n) and	
mean square error for VSSNDLMS	7
Figure 5.4: Original signal s(n); desired response d(n); Error signal e(n) and	
mean square error for P-VSSNDLMS	8
Figure 5.5: Data statistics of average MSE for (a) VSSNDLMS, (b) P-	
VSSNDLMS	8
Figure 5.6: MSE verses SNR for VSSNDLMS and P-VSSNDLMS 4	9
Figure 5.7: MSE (dB) verses SNR for VSSNDLMS and P-VSSNDLMS using	
channel of case (1)	0
Figure 5.8: MSE (dB) verses SNR for VSSNDLMS and P-VSSNDLMS using	
channel of case (2a)5	1
Figure 5.9: MSE (dB) verses SNR for VSSNDLMS and P-VSSNDLMS using	
channel of case (2b)	1
Figure 5.10: MSE (dB) verses SNR for VSSNDLMS and P-VSSNDLMS using	
channel of case (3) for indoor environment v=5 km/hr 5	3

Figure 5.11: MSE (dB) verses SNR for VSSNDLMS and P-VSSNDLMS usin	g
channel of case (3) urban enivronment v1=10km\hr	55
Figure 5.12: MSE (dB) verses SNR for VSSNDLMS and P-VSSNDLMS usin	ıg
channel of case (3) urban environment v2=30km\hr	58
Figure 5.13: MSE (dB) verses SNR for VSSNDLMS and P-VSSNDLMS usin	ıg
channel of case (3) urban environment v3= 90km\hr	58
Figure 5.14: MSE (dB) verses SNR for VSSNDLMS and P-VSSNDLMS usin	g
channel of case (3) urban environment v4= 120km\hr	58
Figure 5.15: MSE (dB) verses SNR for VSSNDLMS and P-VSSNDLMS using	ng
channel of case (3) suburb environment v1= 10km\hr	58
Figure 5.16: MSE (dB) verses SNR for VSSNDLMS and P-VSSNDLMS usin	ıg
channel of case (3) suburb environment v2= 30km\hr	58
Figure 5.17: MSE (dB) verses SNR for VSSNDLMS and P-VSSNDLMS usin	ıg
channel of case (3) suburb environment v3= 90km\hr	58
Figure 5.18: MSE (dB) verses SNR for VSSNDLMS and P-VSSNDLMS usin	g
channel of case (3) suburb environment v4= 120km\hr	58

List of Tables

Table 5-1: Average MSE of VSSNDLMS and P-VSSNDLMS for	
case(2a),case(2b)	52
Table 5-2: Average MSE for different mobile speeds in urban environment	56
Table 5-3: Average MSE for different mobile speeds in suburb environment	58

List of Symbols

C Speed of Light

d(n) Desired Signal

e(n) Error Signal

 f_d Doppler Shift

J Cost function

K Gain vector

L Filter Length

μ Step Size

μ_{var} Variable Step Size

n Additive Noise

N Number of taps for a filter

P_s Average Power of Speech Signal

P_n Average Power of Noise Signal

Rb Bit Rate

S(n) Transmitted Signal

S Power Spectral Density

T_c Coherence time

T_s Symbol time

v Mobile Speed

w(n) Weight vector

y(n) Output of the filter

 Δ Time delay

- f
 abla Gradient $\delta \qquad \qquad \text{Impulse or Regularization parameter}$
- σ_{τ} Path delay or RMS delay spread
- $\lambda \qquad \qquad \text{Eigen value of correlation matrix or forgetting} \\ \qquad \qquad \text{factor}$