DESTI'X

THE SIDE EFFECTS OF SOME INSECTICIDES OF COMMON USE IN AGRICULTURE

THESIS

Submitted for the Requirement of the Degree of Master of Science

Presented to

The Department of Zoology University College for Women

Ain Shams University

By

SAMIRA AHMED ABED EL MEGID, (B. Sc.

Demonstrator, Department of Zoology

Supervised by

Prof. ZAKIA M. RIAD.

University College for Women
Ain Shams University

1985

	CONTENTS	Page
	ACKNOWLEGEMENT	•
	1. INTRODUCTION	• 1
	2. AIM OF THE PRESENT WORK	12
	3. MATERIAL AND METHODS	13
	4. OBSERVATIONS	15
	4.1. THE SIDE EFFECTS OF LANNATE	15
	4.1.1. Literature Review	15
	4.1.2. Present Findings	20
,	4.1.2.1. Liver	23
	4.1.2.2. Kidney	32
	4.1.2.3. Spleen	37
	4.1.2.4. Blood cells	42
	4.1.2.5. Lung	51
	4.1.2.6. Testis	57
	4.2. THZ-SIDE EFFECTS OF CCN 52	72
	4.2.1. Literature Review	72
	4.2.2. Present Findings	76
	4.2.2.1. Liver	77
	4.2.2.2. Kidney	83
	4.2.2.3. Spleen	87
	4.2.2.4. Blood Cells	97
	4.2.2.5. Lung	101
	4.2.2.6. Testis	105

		Page
5.	DISCUSSION	123
6.	SUMMARY	136
7.	BIBLIOGRAPHY	140
8.	ARABIC SUMMARY	

LIST OF FIGURES.

	Page
Fig.1:a- Liver of a control animal, b,c,d,e,f, livers	
of rats treated with lannate to show the reduc-	
tion in size	24
Fig. 2. Examples of hepatic cysts seen by the naked	
eye,	25
Fig. 3. Ab interlobular hepatic vein congested with	
blood	27
Fig. 4. An interlobalar hepatic vein showing a thrombus,	
arrows point at the detatched endothelial cells	27
Fig. 5. Section in one of the observed hepatic cysts	2 8
Fig. 6. Arrows point at an area of lost hepatic archi-	
tecture	28
Fig. 7. Signs of degeneration at the periphery of a hepatic	
lobule a. Control, b. treated	29
Fig. 8. Lymphocytic infiltration around a portal vein	30
Fig. 9. A section in the liver stained with silver nitrate	
to show reticular tissue in: a) a control animal,	
b) a treated animal	31
Fig. 10; Change in the kidney size: (a) Control; (b) after	
one week (c) after two weeks, (d) after three	
weeks (e) after 4 weeks, (f) after 6 weeks;	
(g) after 8 weeks	33

LIST OF TABLES

•	Page
man to Assess body moight for animals treated	
Table 1: Average body weight for animals treated	23
with lannate	
Table 2: Average count of R.B.Cs. of rats treated with	42
lannate	
Table 3: Average count of W.B.Cs. due to treatment with lammate	.5 1,
. Table 4: Average of differential count of W.B.Cs.	46
of rats treated with lannate	
Table 5: Average absolute number of leucocytes due to treatmen	t
with langate	47
Table 6: Absolute count of nongranular and granular leu-	
cocytes for animals treated with lannate	48
Table 7: Average variations in shape per 500 sperms	
due to treatment with lannate	64
Table 8: Average body weight for animals treated with	
CCN 52	77
Table 9: Average count of R.B.Cs. for animals treated with CC	N 52 97
Table 10. Average count of W.B.Cs. for animals treated with C	XN52 99
Table 11: Average count of non-granular and granular	
leucocytes for animals treated with CCN 52	101
Table 12: Average variations in shape per 500 sperms	
due to treetment with CCN 52	121

	Page
Fig. 11. Marked dilation and congestion of a renal	<u>.</u>
blood capillary	33
Fig. 12. a-Shrinkage of the renal Malpighian corpus	cles
compare with the control (b)	
Fig. 13. Signs of cellular degeneration in the cort	cical
part of the kidney	0.0
Fig. 14. Haemorrhagic patches in the renal medulla.	36
Fig. 15. Masses of inflammatory cells around a rena	
blood vessel	0.0
Fig. 16. b,c,d,e,f,g, Changes in size of the spleen	compare
with the control (a)	39
Fig. 17. Congestion of a splenic blood capillary .	39
Fig. 18. a. Reticular fibers in the spleen of a co	
b. reduction in the reticular tissue cont	ent of
the spleen of a rat treated with lanna	te. 40
Fig. 19. Reappearance of reticular fiber 8 weeks p	ost
treatment with lannate	41
Fig. 20. Variations in R.B.Cs. counts due to treatm	ent
with lannate	43
Fig. 21: Variation in white blood cell count due to	,
tweetwent mith longoto	45

Pa	ıge
Fig .22: Variation in counts nongranular leucocytes due	
to treatment with lannate	49
Fig. 23 Variation in the absolute number of granular	
leucocytes due to treatment with lannate	50
Fig. 24. Reduction in size of the lung due to treatment	
with lannate (a) Control (b) treated	52
Fig. 25 Nodular masses in the lung of a rat treated	
with lannate	52
Fig. 26 Solid consistancy of the lung	52
Fig. 27. a: Loss of alveolar cavities in the lung of a	
rat treated with lannate; b: Section in the lung of	f
a control animal for comparison	53
Fig. 28: Macrophages in the pulmonary tissue	54
Fig. 29. Scattered hyaline masses in the lung	54
Fig. 30: A mass of inflammatory cells within an	
intrapulmonary bronchiole	55
Fig. 31. Examples of hypercellularity of the pleural	
epithelium	56
Fig. 32. Signs of vascular thrombosis and stagnation	
of blood in a pulmonary blood capillary	58
Fig. 33: A mass of inflammatory cells within the pulmonary	
ticano	58

	Page
Fig. 34: Engulfed haemosiderin granules	59
Fig. 35: Change in the testis size (a) control, (b) after	
one week, (c) after two weeks, (d) after three	
weeks; (e) after 4 weeks (f) after 6 weeks (g)	•
after 8 weeks	59
Fig. 36: a: Testicular oedema; compare with the control(b)	60
Fig. 37: Sheets of spermatogenic tissue separated from	_
the tubular wall	62
Fig. 38: a: Thickened capsule and hyaline masses; Compare	
with control (b)	63
Fig. 39: Variation in counts of abnormal sperms due to	
treatment with lannate	6 5
Fig. 40: a: A normal sperm from a control animal, b: an	
enlarged head region	66
Fig. 41 Deviation in shape of the sperm head	67
Fig. 42 Unusually shaped sperm tails	69
Fig. 43: Sperms showing abnormalities in both the	
head and the tail regions	70
Fig. 44: a: An enlarged liver of a rat treated with CCN52	
compare with the control liver (b)	78
Fig. 45 Till malohog of conglomerating together	70

		Page
Fig. 46: I	Liver showing irregular and nodular surface	78
	Stagnation of blood note the lymphocytic aggrection	
ć	round teblood vessels note also the detatched endo-	
1	thelium	80
Fig. 48:	a. Necrosis and fatty degeneration in the liver	
-	cells, compare with the control (b)	81
Fig. 49:	Fibrosis and thickening of the hepatic capsule;	
	note also the necrosis of the liver cells.	82
Fig. 50:	Intravascular thrombosis; note the separation	
	of the endothelial layer	82
Fig. 51:	Section in the liver to show a part of the wall of	
	a hepatic cyst; note also the areas of necrosis	
	among other areas of normal hepatic cells	84
Fig. 52.	An enlarged part of the wall of the cyst	-84
	Change in the kidney size; (a) Control, (b)after	
`	one week (c) after two weeks (d) after three	
	weeks (e) after 4 weeks (f) after 6 weeks;	o c
	(g) after 8 weeks	85
Fig. 54	Marked reduction in size of the renal glomeruli	85
Fig. 55:	Haemosiderin granules stained with potassium	
	ferrocyanide	86

	Page
Fig. 56: Signs of degeneration of the convoluted tubules	;
note also thickened capsule	. 86
Fig. 57: Signs of degeneration of the convoluted tubules	88
Fig. 58: Stagnation of blood in a renal capillary	88
Fig. 59: A mass of inflammatory tissue.	89
Fig. 60: Variation in size of the spleen throughout the	
duration of the experiment (a) control; (b)	
after one week (c) after two weeks (d) after	
three weeks (e) after 4 weeks (f) after 6 weeks	
(g) after 8 weeks	90
Fig. 61: Marked thickening of the splenic capsule	90
Fig. 62: a: Signs of degeneration of the splenic tissue;	
compare with the control (b)	92
Fig. 63: Stagnant blood in the red pulp of the spleen.	93
Fig. 64: a: Malphighian corpscules of an animal treated	
with CCN 52 surrounded by a pale area; compare	
with the control (b)	94
Fig. 65: Thickening of the central artery in a splenic	
Malphighian corpuscle	95
Fig. 66: Fibrosis of the blood vessels (Stained with	
Mallory); note also the intravascular thrombosi	s. 96
Fig. 67: Haemosiderin granules stainedwith Prussian blu	e
	96

Page
Fig. 68: Variation in RBCs counts due to treatment with CCN 52
Fig. 69: Variation in white blood cell count due to
treatment with CCN 52 100
Fig. 70: Variation in absolute number of nongranular leucocytes
due to treatment with CCN 52 102
Fig. 71: Variation in the absolute number of granular
leucocytes due to treatment with CCN 52 103
Fig. 72 a: Excessive cellularity of the pleura; compare
with control (b) 104
Fig. 73 :Intravascular thrombosis in one of the pulmonary
vessels; note theadherent endothelial lining106
Fig. 74: Broken interaveolar septa 106
Fig. 75: A mass of lymphoid tissue occupying a large
area of the lung 107
Fig 76: a: Section in lung stained with orcein; note
the marked loss of elastic fibres; compare with
the control (b) 108
Fig. 77: Variation in size on the testis throughout the
duration of the experiment; compare with the control (a). 109
Fig. 78: A large cyst dissected from the spermatic cord . 109

- viii -

		Page
Fig. 79	: Section in the wall of the cyst to show surrounding capsule	110 `
Fire. 80	: An enlarged part of the wall of the cyst note	
1,5,	the phagocytic cells; note also the lymphocytic	
	infiltration	_110
Fig. 81	: Signs of hyaline degeneration of the wall in	
	the cyst	111
Fig. 82	: The wall of the cyst stained with silver; note	
	the presence of a net of reticular fibres	111
Fig. 83	: Casts of spermatogenic cells separated from	
	mother spermatogonia	113
Fig. 84	: Intertubular oedema of the testis	1 13
	: Hyaline masses between the seminiferous tubules	114
Fig. 86	: Section in the testis to show recovery of the	
_	testicular activity; Feulgen nuclear stain	114
Fig. 87	: a: Normal sperm from a control animal, b: an	
_ 0-	enlarged head region	116
Fig. 88	3: abnormalities in shape of the sperm head	117
Fig. 89	: Abnormalities involving the tail region.	1 18
Fig. 90): Simultaneos abnormalities in the head and	
_	tail reagions	119
Fig. 91	: Abnormally shaped sperms/500 due to treatment	
	with CCN 52	122

ACKNOWLEDGEMENT

I wish to express my deep thanks and gratitude to Professor Dr. Zakia M. Riad at the Zoology Department, Ain Shams University College for Women, not only for her valuable supervision, great help and guidance, but also for her continuous encouragement, constructive criticism throughout this work. No words seem to be sufficient to express my gratitude and indebtedness.

1. INTRODUCTION

The struggle for survival has stimulated the human brain to search for some means of getting rid of his natural competitors. This has initiated the use of a variety of chemical compounds for the purpose of killing or irradication of various agricultural

pests as well as various animal groups that act as intermediate hosts for some parasites on man. chemicals are usually mixed with water and sprayed on plants. They are usually introduced into the body of various biological systems by impregnation through the cuticle or skin, through inhalation or through ingestion. An ideal pesticide is expected to exert a fatal effect on the pest but without having any destructive effect on the human body. However, the fact that various biological systems show some similar reactive responses points at the probability of some unpleasant side effects on human subjects who might be some how exposed to these chemicals. It is a fact that the human body would be only exposed to minimal quantities of these chemicals, but some of them proved to have additive properties, and others