

Design and Implementation of The Multiplexer and Channel Coder for WCDMA

A Thesis
Submitted in partial fulfillment for the requirements
Of the degree of Master of Science in Electrical Engineering
(Electronics and Communications Engineering)

Submitted by

Tamer Kamal Elewa

B.Sc. in Electrical Engineering Electronics and Communications Engineering Dept. Ain Shams University,2000

Supervised by

Prof. Dr. Magdy Mahmoud Ibrahim Prof. Dr. Abdel Halim Zekry

Electronics and Communications Engineering Dept.
Ain Shams University
Faculty of Engineering

Cairo 2008

Judgment Committee

:Design and Implementation of The Multiplexer and

:Tamer Kamal Elewa Eid

Channel Coder for WCDMA

Name

Thesis

:Master of Science in Electrical Engineering Degree Name, Title and Affiliation Signature **Prof.Dr.Abdel Aziz El Bassiouny Business Development Director** Teletech (Examiner) Prof.Dr. Hadya El Henawy Electronics and Communications Engineering Dept. Faculty of Engineering, Ain Shams University (Examiner) Prof.Dr. Magdy Ibrahim Electronics and Communications Engineering Dept. Faculty of Engineering, Ain Shams University (Supervisor) **Prof.Dr Abdel Halim Zekry** Electronics and Communications Engineering Dept. Faculty of Engineering, Ain Shams University (Supervisor) Date: / /

Statement

This dissertation is submitted to Ain Shams University in partial fulfillment of the degree of Master of Science in Electrical Engineering (Electronics and communications Engineering)

The work included in this thesis was carried out by the author at the department of Electronics and Communications Engineering, Faculty of Engineering, Ain Shams University, Cairo, Egypt.

No part of this thesis was submitted for a degree or a qualifications at any other university or institution.

Name : Tamer Kamal Elewa Eid

Signature :

Date :

Curriculum Vitae

Name of the researcher :Tamer Kamal Elewa Eid

Date of Birth : 15/9/1978

Place of Birth :Cairo

Nationality :Egyptian

First University Degree : B.Sc. in Electrical Engineering

(Electronics and communications) Faculty of Engineering, Ain Shams

University.

Certification Date : July 2000

Name : Tamer Kamal Elewa Eid

Signature :

Date :

Thesis Abstract

Tamer Kamal Elewa,"Design and Implementation Of Multiplexer and channel encoder system for WCDMA", Master of Science dissertation, Ain Shams University, 2008

Third generation Mobile communication systems has acquired a great attention in the last few years. Boosted by a notable increase in the number of mobile users, and an increasing demand of Mobile based applications not limited to voice and other circuit switched based applications, but extended rapidly to include high speed internet access, Mobile Banking, video and audio streaming, location based services. Third generation Mobile Communications systems makes all the above applications available by providing a reliable network architecture, good utilization of radio resources, and a well managed quality of service profiles according to each service requirements.

WCDMA FDD is the most wide spread third generation system, commercially deployed in many countries, and seamlessly evolving from the existing GSM (second generation) Mobile systems.

In this thesis we focus on an important part of the WCDMA transceiver system which is multiplexing and channel coding, a process that handles the data between the MAC layer and the physical layer, and results in the preparation of data to handle the distortion and errors resulting from the transmission over radio channels

A complete implementation to the transmitter system was done fully compliant with the 3GPP standards, followed by a design and an implementation of the receiver part that perform the inverse operation of the transmitter part. System performance evaluation was carried out to evaluate the system BER performance with different radio conditions, different channel encoding types, different rate matching schemes.

The results can be a useful guideline to system designers to determine the proper operation point for each service type according to the service BER requirements and the available radio conditions.

Acknowledgement

I would like to offer my great thanks and gratitude to Dr.Abdel Halim Zakry for his support, supervision and guidance during all the phases of this work.

I would like to thank my family for their encouragement and support.

CONTENTS

LIST OF FIGURES	x
LIST OF TABLES	xii
GLOSSARY OF TERMS	xiii
CHAPTER 1	1
1 INTRODUCTION	1
1.1 History of Mobile Cellular Systems	1
1.1.1 First Generation	1
1.1.2 Second Generation	2
1.1.3 Third Generation Cellular Systems	2
1.2 3GPP	3
1.3 Research Goals	4
1.4 Thesis Overview	4
CHAPTER 2	5
2 PRINCIPLES OF CDMA	5
2.1 Radio-Channel Access Schemes	5
2.2 Spread Spectrum	7
2.3 RAKE Receiver	11
2.4 Power Control	12
2.5 Handovers	13
2.5.1 Soft Handover	14
2.5.2 Softer Handover	15
2.5.3 Relocation	16
2.5.4 Hard Handover	19
2.5.5 Intersystem Handovers	20
2.6 Spreading Codes	21
2.6.1 Orthogonal Codes	21
2.6.2 PN Codes	23
CHAPTER 3	26
3 CHANNEL CODING	26
3.1 Coding Processes	26

3.2 Coding Theory	27
3.3 Block Codes	28
3.4 Convolutional Codes	30
3.5 Turbo codes	32
3.5.1 LOG-MAP Algorithm	35
CHAPTER 4	36
4 MULTIPLEXING AND CHANNEL CODING PROTOCOL MODEL	36
4.1 Introduction	36
4.2 WCDMA Channels Overview	38
4.2.1 Logical Channels	38
4.2.2 Transport Channels	39
4.2.3 Physical Channels	39
4.3 Transport Formats	41
4.4 Data Through Layer 1	45
CHAPTER 5	48
5 3GPP MULTIPLEXING AND CHANNEL CODING	48
5.1 General	48
5.2 Coding And Multiplexing Steps Of Trch	48
5.2.1 CRC Attachment	50
5.2.2 Transport block concatenation and code block segmentation	50
5.2.3 Channel coding	52
5.2.4 Radio frame size equalization	54
5.2.5 First Interleaving	54
5. 2.6 Radio frame segmentation	56
5.2.7 Rate Matching	56
5.2.8 Trch Multiplexing	62
5.2.9 Second interleaving	62
CHAPTER 6	65
6 SYSTEM DESIGN AND IMPLEMENTATION	65
6.1 Introduction	65
6.2 proposed Design	65

6.3 System Design and Implementation	66
6.3.1 Initial Setting Part	68
6.3.2 Transmitter part	68
6.3.3 Receiver Part	69
6.3.4 Channel part	69
6.4 General System BER Performance	70
6.4.1 Convolutional coder 1/2 vs. Convolutional coder 1/3	70
6.4.2 Convolutional Coder 1/3 vs. Turbo Coder	71
6.5 Effect of Puncturing on system BER	72
6.5.1 Effect of Puncturing on Convolutional Code Rate 1/2	73
6.5.2 Effect of Puncturing on Convolutional Code Rate 1/3	73
6.5.3 Effect of Puncturing on Turbo Code	77
CHAPTER 7	79
7 SUMMARY AND CONCLUSION	79
REFERENCES	81
APPENDIX A	83
APPENDIX B	94

LIST OF FIGURES

Fig 2.1 FDMA	5
Fig 2.2 TDMA	6
Fig 2.3 CDMA	7
Fig 2.4 Spreading	8
Fig 2.5 de-spreading	8
Fig 2.6 recovery of de-spread signal	9
Fig 2.7 unrecoverable signal	10
Fig 2.8 Interference resistance	11
Fig 2.9 RAKE receiver	12
Fig 2.10 near-far effect on the UL direction	13
Fig 2.11 SHO (RNC: Radio Network Controller)	14
Fig 2.12 relocation Part 1	16
Fig 2.13 relocation Part 2	17
Fig 2.14 relocation Part 3	18
Fig 2.15 relocation Part 4.	18
Fig 2.16 Generation of OVSF codes.	22
Fig 2.17 orthogonal codes	23
Fig 2.18 use of orthogonal codes	24
Fig 2.19 code types on the air interface	25
Fig 3.1 coding process in a digital communications System	27
Fig 3.2 Block Codes	28
Fig 3.3 systematic and non- systematic codes	29
Fig 3.4 Convolutional 1/3 rate encoder	31
Fig 3.5 WCDMA turbo coder	33
Fig 3.6 Turbo decoder	34
Fig 3.7 Trellis Diagram of One Constituent Encoder	35
Fig 4.1 Air interface protocol model	36
Fig 4.2 Interfaces between MAC and PHY	37
Fig 4.3 Channel Concepts	38
Fig A A TTI	42

Fig 4.5 Transport formats	43
Fig 4.6 Downlink data path through Physical layer	46
Fig 4.7 Downlink data path through Physical layer	47
Fig 5.1 uplink channel coding and multiplexing steps	49
Fig 5.2: Rate 1/2 and rate 1/3 convolutional coders	53
Fig 5.3 Structure of rate 1/3 Turbo coder	53
Fig 5.4 uplink rate matching algorithm	57
Figure 5.5: Puncturing of turbo encoded TrCHs in uplink	61
Figure 5.6: Rate matching for un-coded TrCHs, convolutionally encoded TrCHs,	and for
turbo encoded TrCHs with repetition in uplink	61
Fig 6.1 Coding and multiplexing of transport channels	65
Fig 6.2 implemented design for multiplexing and channel coding	67
Fig 6.3 Convolutional encoder rate 1/2 and rate 1/3 BER	70
Fig 6.4 Convolutional encoder rate 1/3 and Turbo encoder BER	71
Fig 6.5 Convolutional coder 1/2 with puncturing BER	73
Fig 6.6 Convolutional coder 1/3 with puncturing BER	

LIST OF TABLES

Table 2.1 XOR truth table	.21
Table 5.1: Usage of channel coding scheme and coding rate	52
Table 5.2 Inter-column permutation patterns for 1st interleaving	55
Table 5.3 Inter-column permutation pattern for 2nd interleaving	64
Table 6.1 relation between puncturing rate and O/P bit rate for convolutional encoder $1/2 \dots$	73
Table 6.2 relation between puncturing rate and O/P bit rate for convolutional encoder 1/3	75
Table 6.3 relation between puncturing rate and O/P bit rate for turbo encoder	.77

Glossary of Terms

ARQ Automatic Repeat Request

BCH Broadcast Channel
BER Bit Error Rate
BLER Block Error Rate
BS Base Station

CCPCH Common Control Physical Channel CCTrCH Coded Composite Transport Channel

CFN Connection Frame Number CRC Cyclic Redundancy Check

DCH Dedicated Channel

DL Downlink (Forward link)

DPCCH Dedicated Physical Control Channel

DPCH Dedicated Physical Channel
DPDCH Dedicated Physical Data Channel

DS-CDMA Direct-Sequence Code Division Multiple Access

DSCH Downlink Shared Channel
DTX Discontinuous Transmission
FACH Forward Access Channel
FDD Frequency Division Duplex

FER Frame Error Rate
GF Galois Field

HARQ Hybrid Automatic Repeat reQuest

HS-DPCCH Dedicated Physical Control Channel (uplink) for HS-DSCH

HS-DSCH High Speed Downlink Shared Channel

HS-PDSCH High Speed Physical Downlink Shared Channel

HS-SCCH Shared Control Channel for HS-DSCH

MAC Medium Access Control Mcps Mega Chip Per Second

MS Mobile Station

OVSF Orthogonal Variable Spreading Factor (codes)
PCCC Parallel Concatenated Convolutional Code

PCH Paging Channel PhCH Physical Channel

PRACH Physical Random Access Channel

RACH Random Access Channel

RSC Recursive Systematic Convolutional Coder

RV Redundancy Version

RX Receive

SCH Synchronisation Channel

SF Spreading Factor
SFN System Frame Number
SIR Signal-to-Interference Ratio
SNR Signal to Noise Ratio

TF Transport Format

TFC

Transport Format Combination
Transport Format Combination Indicator **TFCI**

TPC Transmit Power Control Transport Channel TrCH

Transmission Time Interval TTI

Transmit TX

Uplink (Reverse link) UL

CHAPTER 1

1 INTRODUCTION

1.1 History of Mobile Cellular Systems

1.1.1 First Generation

The first generation of mobile cellular telecommunications systems appeared in the 1980s [1]. The first generation was not the beginning of mobile communications, as there were several mobile radio networks in existence before then, but they were not cellular systems either. The capacity of these early networks was much lower than that of cellular networks, and the support for mobility was weaker.

In mobile cellular networks the coverage area is divided into small cells, and thus the same frequencies can be used several times in the network without disruptive interference. This increases the system capacity. The first generation used analog transmission techniques for traffic, which was almost entirely voice. There was no dominant standard but several competing ones.

The most successful standards were *Nordic Mobile Telephone* (NMT), *Total Access Communications System* (TACS), and *Advanced Mobile Phone Service* (AMPS). Other standards were often developed and used only in one country, such as C-Netz in West Germany and Radiocomm 2000 in France.

All first generation cellular systems employ Frequency Division Multiple Access (FDMA) with each channel assigned to a unique frequency band within the a cluster of cells.