PHYSIOLOGICAL STUDIES ON THE ADAPTATION OF SOME TOMATO VARIETIES UNDER SALINE CONDITION.

BY

Ebtesam Hashem Aboul-Magd Hassan B. Sc. Agric. Sci., Hort. Dept., Ain Shams Univ. 1992

A thesis submitted in partial fulfillment

635.642 Of E. H_{The requirements for the degree of}

56250

MASTER OF SCINCE

In

Agriculture (Plant Physiology)

Department Of Agricultural Botany Faculty of Agriculture Ain Shams University 1999

Approval sheet

Physiological Studies on the adaptation of some tomato varieties under saline condition.

BY

Ebtesam Hashem Aboul-Magd Hassan B. Sc. Agric. Sci., Hort. Dept., Ain Shams Univ. 1992

This thesis for master degree has been approved by:

Prof. Dr. Mostafa Aly Amer Prof. of Plant Physiology, Faculty of Agriculture, Ain Shams University

Prof. Dr. El-Husseiny Tawfik kishk

Genetic Resources Dept. Desert Research Center

Prof. Dr. Aly Raafat youssef Raafat

Prof. of Plant Physiology, Faculty of Agriculture, Ann Shams University (Supervisor) Shams University (Supervisor)

Date of examination: 5/9 1999.

Physiological Studies on the adaptation of some tomato varieties under saline condition.

BY

Ebtesam Hashem Aboul-Magd Hassan B. Sc. Agric. Sci., Hort. Dept., Ain Shams Univ. 1992

Under supervision of:

Prof. Dr. Aly Raafat youssef Raafat

Prof. of Plant Physiology, Faculty of Agriculture, Ain Shams University.

Dr. Said Awad Shehata

Assoc. Prof. of Plant Physiology, Faculty of Agriculture, Ain Shams University.

Dr. Hussein Said Khafaga

Head of Plant Adaptation unit, Genetic Resources Dept. Desert Research Center

Abbreviation

```
cm = centimeter
cv./cvs. = cultivar / s
DAT = Days After Transplanting
dS. m<sup>-1</sup> = deciSiemens per meter
EC= Electrical Conductivity
fed.= fedden
g = gram
kg = kilogram
m = meter
mg/g = milligram /gram
mM = milli Mole
mS. cm<sup>-1</sup> = milliSiemens per centimeter
nm = nano meter
ppb = part per billion
ppm = part per million
TDZ = Thidiazuron
wt = weight
```

ABSTRACT

Ebtesam Hashem Aboul-Magd Hassan

Physiological studies on the adaptation of some tomato varieties under saline condition.

Master of science

Agricultural science (Plant Physiology) Department of Agricultural Botany, Faculty of Agriculture, Ain shams University.

Two experiments were carried out on tomato plants at two different locations; the first one was performed at the greenhouse of Desert Research Center, El-Mataria, Cairo in 1996 on four tomato cultivars in pot experiment under saline stress (Na Cl) and treatments of different thidiazuron (TDZ) concentrations. TDZ was applied in two ways either by seed soaking or through irrigation water. The second experiment was conducted at Wadi Sudr Agricultural Experimental station, South Sinai Governrate in 1997 and 1998 seasons to evaluate the salt resistance of two tomato cultivars under saline conditions of the area. Furthermore, the possibility of increasing salt resistance of these cultivars was also studied by applying some treatments of the bioregulator, thidiazuron (TDZ) and/or KCl as foliar spray.

Different physiological parameters including growth characters, yield and yield components, nutrient elements(Na, K, Ca and Mg), proline and protein contents were determined.

Result indicated that Castle Rock cultivar was more salt tolerant than Edkawy cultivar. Meanwhile, the lowest concentrations of thidiazuron, (0.5 and 1.0 ppb) enhanced salt resistance of the plant at the vegetative and flowering stages as well as yield. On the other hand, KCl improved growth,

yield and chemical composition of tomato cultivars as compared with control.

Key Words

Tomato – adaptation – salt tolerance – salt resistance – Thidiazuron – KCl – growth – Yield – Chemical Composition – nutrient elements – proline – protein.

ACKNOWLEDGMENT

I wish to express my sincere appreciation and gratitude to **Prof. Dr. A. Raafat**, Professor of plant physiology, Agric. Botany Department, Ain-Shams University, for his supervision, sincere criticism, leading guidance and valuable advice.

I am greatly indebted to **Dr. S. A. Shehata**, Associate Professor of plant physiology Agric. Botany Department, for his supervision, active guidance, continuos advice and encouragement.

Thanks are also due to **Dr. H. S. Khafaga** head of plant Adaptation unit, Genetic Resources Department, Desert Research Center, for suggesting the problem, supervision, helping in writing this thesis and continuos guidance.

My deep thanks to **Dr. M. A. Amer**, Professor of plant physiology, Agric. Botany Department, Ain-Shams University, for his good advice and valuable suggestions.

The author is greatly indebted to **Dr. El-Husseiny T. kishk**, Genetic Resources Dept. Desert Research Center for his help and good advice.

Thanks are also to **Dr. Mahdia F. Gabr**, Head of Genetic Resources Dept. Desert Research Center for her help.

All thanks an appreciation go as well to my parents, my sincere husband, my brothers, my sister and my father and mother in low for their invocation, encouragement and patient. May god bless them all.

Finally, I would like to thank all members of the Agriculture Botany Department and Genetic Resources Dep., in Desert Research Center for their services during this study with special consideration to my colleagues Miss Amira Hegazy and Miss Hanan El-Badrawy for their fruitful help and offer.

Contents

Page
Introduction1
Review of literature4
1-Effect of salinity on plant growth and yield4
2-Effect of salinity on chemical composition of the plant6
3-Effect of variation in salinity tolerance of tomato cultivars
on plant growth and yield8
4-Effect of cultivars on chemical composition of the plant9
5-Effect of thidiazuron on plant growth and yield10
6-Effect of thidiazuron on chemical composition of the
plant12
7-Effect of KCl on plant growth and yield13
8-Effect of KCl on chemical composition13
Material and Methods14
Results and Discussion21
1-Greenhouse experiment21
1.1.1TDZ application by Seed soaking21
1.1.1 Effect of salinity on seedling growth21
1.1.2 The differeces among cultivars on seedling growth23
1.1.3 Effect of thidiazuron application by seed soaking on
seedling growth
1.1.4 Effect of interaction between cultivars and salinity on
seedling growth
1.1.5 Effect of interaction between cultivars and thidiazuron
treatments on seedling growth31
1.1.6 Effect of interaction between salinity and thidiazuron
treatments on seedling growth31
1.1.7 Effect of interaction among cultivars, salinity and
thidiazuron treatments on seedling growth36
1.2 TDZ application with Irrigation water41
1.2.1 Effect of salinity on seedling growth

1.2.2 The differences among cultivary
1.2.2 The differences among cultivars on seedling growth43
1.2.3 Effect of thidiazuron on seedling growth
1.2.4 Effect of interaction between cultivars and salinity on seedling growth
seedling growth
1.2.5 Effect of interaction between cultivars and thidiazuron
treatments on seedling growth
1.2.0 Effect of interaction between salinity and thidiazuron
treatments on seedling growth
1.2./ Effect of interaction among cultivare colinity
thidiazuron treatments on seedling growth
2-Field Experiment
2.1 Growth and yield of tomato plant under salination 61
2.1.1 The differences among cultivars performance on growth
parameters
2.1.2 The differences among cultivars performance on yield
and yield components
2.1.3 Effect of thidiazuron on growth parameters
2.1.4 Effect of thidiazuron on yield and yield
components
2.1.5 Effect of KCl on growth parameter
2.1.6 Effect of KCl application on yield and yield
components
2.1.7 Effect of interaction between cultivars and thidiazuron
treatments on growth parameters
treatments on growth parameters
2.1.8 Effect of interaction between cultivars and thidiazuron treatments on yield and yield
treatments on yield and yield components
2.1.9 Effect of interaction between cultivars and KCl
treatments on growth parameters
2.1.10 Effect of interaction between cultivars and VCI
treatments on yield and yield components