ROLE OF DNA CONTENT AND BASE RATIO IN THE INDUCED RADIATION RESISTANCE OF SOME BACTERIAL ISOLATES

В

ABD EL MONEM SAYED BASHANDY

A thesis presented for the degree of Doctor of Philosphy

IN MICROBIOLOGY

92278

Under The Supervision of

Prof. Dr. Amal Shehab Professor And Head Of The Botany Department Women's College Prof. Dr. Zahira Tawfik
Professor And Head Of
Microbiolgy Department
National Center For Radiation
Research And Technology

- Pali-

(fls

Department Of Botany Women's College - Ain Shams University

1996

TO THE SPIRIT OF MY WIFE

4.47

 $\{a_i\}$

ACKNOWLEDGMENT

Firstly, grateful thanks to God, for indefinite blessing.

I would like to express my profound gratitude to **Prof. Dr. Amal Shehab,** Prof. and head of Botany Department,
Women's College Ain Shams University for her kind supervision, valuable advises and helpful notices.

My sincere thanks and deep gratitude to **Professor Dr. Zahira Sayed Tawfik**, professor and head of Microbiology Department in the NCRRT, Egyptian Atomic Energy Authority, for suggesting the point, supervising the work, valuable guidance and for her help during the preparation of the manuscript and offering a valuable suggestions.

My grateful acknowledgment and profound gratitude are expressed to **Prof. Dr. Amin Zaky EL Bahey**, Chairman of the NCRRT, Egyptian Atomic Energy Authority, for his help, cooperation and encouragement.

I wish to express my heartly and deep thanks to **Prof. Dr Mohamed Wafik Habib,** professor of pesticides, Agriculture
Research Center for his help and cooperation.

Thanks to My Colleagues, The Stuff of Microbiology Department and The Radiation Technology Services at the NCRRT and in Botany Department in Women's college Ain Shams University.

At last but not least thanks are offered to the **Spirit of** My Wife for her sacrifices, understanding and continuous encouragement till the end of her life.

to:

ACKNOWLEDGMENT

Firstly, grateful thanks to God, for indefinite blessing.

I would like to express my profound gratitude to **Prof. Dr. Amal Shehab**, Prof. and head of Botany Department,

Women's College Ain Shams University for her kind supervision, valuable advises and helpful notices.

My sincere thanks and deep gratitude to **Professor Dr. Zahira Sayed Tawfik**, professor and head of Microbiology Department in the NCRRT, Egyptian Atomic Energy Authority, for suggesting the point, supervising the work, valuable guidance and for her help during the preparation of the manuscript and offering a valuable suggestions.

My grateful acknowledgment and profound gratitude are expressed to Prof. Dr. Amin Zaky EL Bahey, Chairman of the NCRRT, Egyptian Atomic Energy Authority, for his help, cooperation and encouragement

I wish to express my heartly and deep thanks to **Prof. Dr Mohamed Wafik Habib**, professor of pesticides, Agriculture
Research Center for his help and cooperation.

Thanks to My Colleagues, The Stuff of Microbiology Department and The Radiation Technology Services at the NCRRT and in Botany Department in Women's college Ain Shams University.

At last but not least thanks are offered to the **Spirit of My Wife** for her sacrifices, understanding and continuous encouragement till the end of her life.

Role of DNA Content and Base Ratio in the Induced Radiation Resistance in Some Bacterial Isolates

Abd EL Monem Sayed Bashandy, National Center For Radiation Research And Technology

ABSTRACT

The radiation resitance of some isolated bacterial strains isolated from the environment surrounding the Co-60 source in the NCRRT was determined.

Relationship between the radiation resistance and the DNA content and the "GC" ratio of the induced mutants of these strains were determined after repeated exposure of the parent strains to 6 cycles of γ -irradiation.

The DNA content was found to be increased with the increase in the radiation resistance, while the "GC" ratio was decreased with the increase in the radiation resistance.

The stability of this acquired charaters was studied for induced mutants after storage for 12 month with repeated subculturing, and it was found that this acquired characters are stable.

The relationship between the DNA content and three different types of growth media was detrmined and it was found that the TGY medium is the best one to be used to ggive the highest yield of DNA content.

CONTENTS

Content	Page
INTRODUCTION	1
LITERATURE REVEIW	4
I. DNA in microoganisms	4
II.Ionizing Radiation	5
II.1 Types of ionizing radiation	6
II.2 Mechanisms of inactivation of ionizing radiation	7
II.1.a. Direct effect	8
II.1.b. Indirect effect	9
II.3. Dose survival curves	10
II.4. The decimal reduction dose	14
II.5. Dose fractionation	15
III.Radiation Resistanse Of Microorganisms	16
IV.Effect of Radiation on DNA	20
V.Mutation and Mutants	27
V.1. Types of mutation	28
VI. DNA repair Mechanism	29
VII.Strain Stability and storage of mutants	36
MATERIAS AND METHODS	
I.1. Chemicals	39
I.2.Irradiation facility (Gamma Champer 4000A)	41
I.3.Media	41
I.3.a. Media used for isolation, recovery and viable count	
determination	41
I.3.a.1. Nutreint broth	41
I.3.a.2. Nutrient agar	41
I.3.a.3 Tryptone glucose yeast extract agar(TGY)	42

1.3.b.3. Media used for preparation of test pieces	42
1.3.c. Media used for identification of bacteria	42
1.3c.1. Fermintative acid production from glucose	42
1.3.c.2.Nutrient gelatin	42
I.3c.1.Nitrate agar	42
I.3.,c.1.Starch agar	43
I.3c.1.Citrate agar	43
I.3c.1. Voges Proskauer	43
1.3c.1.Sugar fermintation media	43
1.3.d. Media used for extracion of DNA	44
1.3.d.1. Glucose nutrient agar	44
I.3.d.2. Yeast nutrient agar	44
Reagents	44
II. Methods	
II.1. Isolation of bacterial strains	46
II.2. Preparation of test pieces	47
II.3. Identification of the isolated bacterial strains	47
II.4. Irradiation of bacterial strains	47
II.4.a. Study of the response of the isolated bacterial	
strains to γ - irradiation	47
II.5. Determination of the DNA for the isolated strians	48
II.5.a. Extraction of DNA from the bacterial cells	48
II.5.b. Determination of the cell count	50
II.6.Effect of additinal frctionated doses on the	
radiation resistance, DNA content and DNA base	
ratio of the bacterial strains	50
II.6.1. Determination of the radiation resistance of the	
microbial isolates after repeated exposure γ–	
irradiation	51
6.3. Determination of tre DNA content of the microbial	
isolates after repeated exposure to ν — irradiation	

Contents	Page
II.7. Effect of different growth media on the DNA	
content of the studied strains	52
II.8. Determination of the DNA base ratio of the	
studied strains	53
II.8.a.Cleavage of purines and pyremidines from DNA	53
II.8.b. determination of the guanine-cytosine "GC" ratio	
using TLC technique	53
II.9. Styudy of the stability of the induced characters	
due to repeated exposure to γ- irradiation	54
II.9.a. Response to y- irradiation	55
II.9.b. DNA content determination	55
RESULTS	
I. Isolation of the bacterial strains	56
I.1. Response of the isolated strains to γ- irradiation	57
I.2. Determination of the DNA content of the isolated	
strains and their refrence standards	79
II. Effect of repeated exposure of the isolated strains	
to γ-irradiation	87
II.1. Sensitivity of the microbial strains to y- irradiation	88
II.2. Determination of the DNA content	100
III. Effect of different types of growth media on the	
DNA content	107
IV. Determination of DNA base ratio of the parent and	
mutant strains exposed to 5 and 6 cycles of	
v- irradiation	124

V. Study of the stability of the induced characters	due to
repeated exposure to γ- irradiation	131
CORELATIVE DATA	150
DISCUSSION	159
CONCLUSION	172
SUMMARY	174
REFERENCES	178