Ain-Shams University
Faculty of Education
Department of Biology & Geology

INFLUENCE OF SALINITY ON TWO TOMATO CULTIVARS

Thesis
Submitted for The Degree

of

Master of Science Teacher Preparation (Botany)

583.79

Ву

Laila Mohamed Ahmed Hassan

B Sc. & Ed. (1984)

General Deploma in Science Teacher Preparation Special Deploma in Science Teacher Preparation

1996

Approval Sheet

Name:

Laila Mohamed Ahmed Hassan

Title:

Influence of Salinity on Two Tomato Cultivars

Degree:

Master of Science Teacher Preparation (Botany)

Supervisors

Prof. Dr. A.E. Dowidar

Ain Shams University

Faculty of Education,

Department of Biology & Geology

Prof. Dr. A.A. Abdel-Rahman

Cairo University

Faculty of Science

Department of Botany

Dr. G.M. Fahmy

Cairo University

Faculty of Science

Department of Botany

Acknowledgements

The author wishes to express her sincere appreciation to Prof. Dr. A.E. Dowidar, Professor of Botany, Faculty of Education, Ain Shams University, for supervising this work, encouragement, constructive criticism and unfailing help during this work.

The author expresses her deep gratitude and appreciation to Prof. Dr.

A.A. Abdel Rahman. Professor of Ecology, Botany Department, Faculty of

Science. Cairo University, for supervision.

Sincere gratefulness are due to Dr. G.M. Fahmy, Assistant Professor of Botany, Faculty of Science, Cairo University, for supervising this study.

Constructive criticism, and unfailing help during this work.

Thanks are due to the Frost Dr. M. El-S. Abdalla, the Head of Blology and Georgy Department. Faculty of Education, Ain-Shams University, for a name as encouragement during this work.

Indian are the rotes for rote for rotes, Artificial and regional of Brokey, and the local few presents of providing two cratists and included and a summand with the rotes are presented in the Figurety of Education.

ABSTRACT

Laila Mohamed Ahmed Hassan

INFLUENCE OF SALINITY ON TWO TOMATO CULTIVARS

Pot experiments, were conducted to investigate the effect of different levels of sodium chloride salinity on two cutivars of tomato (Lycopersicom esculentum Mill). The investigated cultivars were Castle rock and Edkawy.

The growth parameters (fresh and dry mass of different organs, number and area of leaves per plant and shoot/root ratios) were significantly reduced with increasing the salinity levels. The transpiration rates and the relative water contents (RWC) of both cultivars decreased significantly as salinity increased. In both tomato cultivars, the major effects of salinity were the increase in the contents of ash, sodium and chloride and a reduction of potassium, calcium and magnesium contents.

The accumulation of significantly higher content of proline in the leaves of Castle rock plants than in those of Edkawy was discussed in relation to their salt tolerance.

With increasing the salinity level, there were a reduction in the contents of chlorophylls a & b and an increase of carotenoids content. The percentage reduction of chlorophylls in Edkawy plants was lower than in Castle rock ones. The increase in the salinity induced gradual reduction of the total carbohydrate contents in the leaves and roots of Castle rock plants compared to those of Edkawy plants which showed the contrary.

Increasing salinity resulted in substantial reduction in the diameter of both stem and root of the two cultivars. However, in case of leaf, increasing salinity brought an increase in mesophyll thickness.

Key Words: Salinity - Tomato - Edkawy - Castle rock.

CONTENTS

	Title	•		Page	
Ι.	INT	RODI	JCTION		
Π.	MA.	ΓERIA	ALS AND METHODS		25
	A-		wth Criteria		
	B-		er Relations:		
	C.		t Chemical Composition		
	D.		tomical studies		
III.	RES		AND DISCUSSION		
			Salinity On:		
	A-	Grov	wth Criteria		33
		1-	Plant height, Number of leaves and Leaf		
		2-	Fresh and dry mass of different organs		
		3-	Shoot/Root ratio		
	B-	Wate	er Relations		
		1-	Diurnal variation of climatic factors		
			transpiration rate and relative water conte	nt	
			of the leaves		44
		2-	Succulence Ratio		
	C-	Cher	nical Composition		
		1-	Ions composition		
		2-	Ash content		
		3-	Proline content		
		4-	Photosynthetic pigments of the leaves		
		5-	Total carbohydrate contents of the leaves		-
			and toots		68
	D-	Anata	omical Characters		
V	SUM		Y		
Ç.			CES		
CI			LIMMA A D.S.		

LIST OF FIGURES

		Page
Fig. (1)	Effect of salinity levels on shoot height	35
Fig. (2)	effect of salinity levels on number of leaves/plant	36
Fig. (3)	Effect of salinity levels on total leaf area (cm²)/plant	36
Fig. (4)	Effect of salinity levels on fresh mass (g)/plant	40
Fig.(5)	Effect of salinity levels on dry mass (g)/plant	40
Fig. (6)	Diurnal variations of climatic factors (A & b) and transpiration rates of tomato culivars Castle rock and Edkawy (d) grown under different salinity levels.	46
Fig. (7)	Diurnal variation of relative water content (RWC) in the leaves of tomato cv. Castle rock and cv. Edkawy grown under different salinity levels.	49
Fig. (8)	Effect of salinity levels on Na ⁺ and K ⁺ content (% dry mass) of Castle rock and Edkawy cultivars	: 5 7
Fig. (9)	Effect of salinity levels on Ca ²⁺ and Mg ²⁺ content (% dry mass) of Castle rock and Edkawy cultivars	
Fig. (10)	Effect of salinity on Cl ⁻ and ash content (% dry	59

Fig. (11)	Effect of salinity levels on photosynthetic pigments (mg/L) in the leaves of Castle rock and Edkawy cultivars	6-
Fig. (12)	Effect of salinity levels on proline content in the leaves of Castle rock and Edkawy cultivars	67
Fig.(13)	Effect of salinity levels on carbohydrate content (% dry mass) of Castle rock and Edkawy cultivars	70
Photo (1)	Tomato plants of the Castle rock cultivar 86-days after treatment with different salinity levels	37
Photo (2)	Tomato plants of the Edkawy cultivar 86-days after treatment with different salinity levels	37
Photo (3)	A & B Cross sections in leaf of tomato cv. Castle rock showing the control and the salt stressed plants, respectively	73
Photo (4)	A & B Cross sections in leaf of tomato cv. Edkawy showing the control and the salt stressed plants, respectively	[:
Photo (5)	A & B Cross sections in stem of tomato cv. Castle rock showing the control and the salt stressed plants, respectively	78
Photo (6)	A & B Cross sections in stem of tomate ev. Edkawy showing the control and the salt stressed	79

Photo. (7)	A & B Cross sections in root of tomato cv. Castle rock showing the control and the salt stressed plants, respectively	82
Photo. (8)	A & B Cross sections in root of tomato cv. Edkawy showing the control and the salt stressed plants, respectively	. 83

LIST OF TABLES

	Page
Table (1):	Nutrient solution from (Downs and Hellmer, 1975) 27
Table (2):	Effect of salinity levels on number of leaves, total leaf area/plant (cm²), height of shoot of the two studied cultivars of tomato
Table (3):	Effect of salinity levels on fresh mass (g)/plant of leaves, stems & roots of the two studied cultivars of tomato
Table (4):	Effect of salinity levels on dry mass (g)/plant of different plant organs and on shoot/root ratio (S/R) of the two studied cultivars of tomato
Table (5):	Diurnal variation of climatic factors and transpiration rates of the tomate plants of Castle rock cultivar grown under different levels of salinity.
Table (6):	Diumal variation of climatic factors and transpiration rate of tomato plant of Edkawy cultivar grown under different levels of salinity. 48
Table (7):	Diurnal variations of climatic factors and relative water content (RWC) of tomato plants of Castle rock cultivar grown under different levels of salinity.

Гable (8):	Diurnal variations of climatic factors and relative water content (RWC) of tomato plant of Edkawy cultivar grown under different levels of salinity 51
Table (9):	Effect of salinity levels on the succullence ratio in the different organs of the tomato plants of Castle rock and Edkawy cultivars. Results are means of 6 samples with standard derivatives ≤ 10%
Table (10):	Effect of salinity levels on mineral ions composition of leaves of the two studied cultivars of tomato plants. Values are the mean of three samples with standard deviation $\leq 10\%$
Table (11):	Effect of salinity levels on mineral ions composition of stems of the two studied cultivars of tomato plants. Values are the mean of three samples with standard deviation ≤ 10%
Table (12):	Effect of salinity levels on mineral ions composition of roots of the two studied cultivars of tomato plants. Values are means of three samples with standard deviation $\leq 10\%$
Table (13):	Effect of salinity level on proline content (µmol/g fresh mass) of the leaves of the two studied cultivars of tomato
Table (14):	Effect of salinity on photosynthetic pigments of leaves of the two studied cultivars of tomato 68

Table (15):	Effect of salinity on total carbohydrate (%) of	
	leaves & roots of the two studied cultivars of	
	tomato plants	. 7
Table (16):	Leaf anatomical characters of the two studied cultivars of tomato grown under salt stress	75
Table (17):	Stem anatomical characters of the two studied cultivars of tomato grown under salt stress	80
Table (18):	Root anatomical characters of the two studied cultivars of tomato grown under salt stress	84

Explosion and the following many of the first of the firs

INTRODUCTION

I. INTRODUCTION

Salinity has been recognized as a major factor limiting crop productivity in the arid and semi-arid regions of the world. Millions of hectares of lands throughout the world are too saline to produce economic crop yields and more land becomes non-productive each year because of salt accumulation.

Plants grown under high salinity levels appeared to be associated with certain metabolic state different from that of those grown under non-saline conditions. Although such stress may affect plant growth, many facts are still required with regard to the response and accumulation of some metabolic products and constituent ions by plants having different salt resistance mechanisms. It is possible that coastal areas to which abundant sea water is available could be meeting this need for extending in crop cultivation. If so, hundreds of millions of hectares of land in the world would be potential food producing areas (Mudie 1974, Flowers et al. 1977) and loss of irrigated land to farming as a result of salinizing could be reversed (Chapman 1975). But is there an unexploited potential in the use of new crops derived from plants native to saline habitats which could be grown in areas where saline water are available for irrigation and/or where the soils are saline? Much attention is being given to a search for new salt resistant plants. The U.S. salinity laboratory has classified a number of crops with regard to their salt tolerance (Richards 1954). Their criterion for high salt tolerance corresponding to a concentration of NaCl about one-third that of sea water. Obviously, the concern is world-wide and the crops getting most attention are those having salt resistance.

Generally, salinity resistance and/or tolerance is achieved by a complex of mechanisms and we have referred in our discussion to some facts and suggestions that may explain how these plants resist and endure high saline conditions. Several authors have drown attention to genotypic differences between salt-tolerant and salt-sensitive plants in respect to pertinent physiological and biochemical parameters.

Tomato (Lycopersicon esculentum Mill.) is one of the most important vegetable crops in Egypt with more than 300,000 feddan cultivated yearly (Saeid et al. 1988). According to major crop division, tomato is one of the vegetable crops which is classified as a medium salt tolerant one (Richards 1954, Larcher 1983). Detailed studies indicate that the genus Lycopersicon contains species and ecotypes with various degrees of salt tolerance (Rush and Epstein 1976).

A. Effect of Salinity on Growth Criteria:

Effect of salinity on growth of crops are well documented (Carter, 1975; Maas and Hoffman, 1977 and Epstein et al., 1980).

For crop plants, differences in salt resistance exist not only among different genera and species, but even within species (Epstein, 1972, 1983; Epstein *et al.*, 1980 and Maas and Hoffman, 1977). These observations support the argument that crop plants can be adapted to saline environments, (Epstein *et al.*, 1980).

Shalhevet and Yaron (1973) estimated a yield reduction for Lycoperscion esculentum var. VF 145 of 10% for every 1.5 dS/m. They suggested that reduction in yield depend not only on the average salinity but also on the salt distribution in the plant root zone.

Dumbroff and Cooper (1974) stated that the most pronounced effect of salinity on growth of tomato was during the early seeding stage. They also found that buds and flowers formation were delayed